Temporal Network Embedding for Link Prediction via VAE Joint Attention Mechanism
Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal n...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 33; H. 12; S. 7400 - 7413 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To overcome these problems, we propose a novel TNE method named temporal network embedding method based on the VAE framework (TVAE), which is based on a variational autoencoder (VAE) to capture the evolution of temporal networks for link prediction. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Through the combination of a self-attention mechanism and recurrent neural networks, TVAE can update node representations and keep the temporal dependence of vectors over time. We utilize parameter inheritance to keep the new embedding close to the previous one, rather than explicitly using regularization, and thus, it is effective for large-scale networks. We evaluate our model and several baselines on synthetic data sets and real-world networks. The experimental results demonstrate that TVAE has superior performance and lower time cost compared with the baselines. |
|---|---|
| AbstractList | Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To overcome these problems, we propose a novel TNE method named temporal network embedding method based on the VAE framework (TVAE), which is based on a variational autoencoder (VAE) to capture the evolution of temporal networks for link prediction. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Through the combination of a self-attention mechanism and recurrent neural networks, TVAE can update node representations and keep the temporal dependence of vectors over time. We utilize parameter inheritance to keep the new embedding close to the previous one, rather than explicitly using regularization, and thus, it is effective for large-scale networks. We evaluate our model and several baselines on synthetic data sets and real-world networks. The experimental results demonstrate that TVAE has superior performance and lower time cost compared with the baselines. Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To overcome these problems, we propose a novel TNE method named temporal network embedding method based on the VAE framework (TVAE), which is based on a variational autoencoder (VAE) to capture the evolution of temporal networks for link prediction. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Through the combination of a self-attention mechanism and recurrent neural networks, TVAE can update node representations and keep the temporal dependence of vectors over time. We utilize parameter inheritance to keep the new embedding close to the previous one, rather than explicitly using regularization, and thus, it is effective for large-scale networks. We evaluate our model and several baselines on synthetic data sets and real-world networks. The experimental results demonstrate that TVAE has superior performance and lower time cost compared with the baselines.Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To overcome these problems, we propose a novel TNE method named temporal network embedding method based on the VAE framework (TVAE), which is based on a variational autoencoder (VAE) to capture the evolution of temporal networks for link prediction. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Through the combination of a self-attention mechanism and recurrent neural networks, TVAE can update node representations and keep the temporal dependence of vectors over time. We utilize parameter inheritance to keep the new embedding close to the previous one, rather than explicitly using regularization, and thus, it is effective for large-scale networks. We evaluate our model and several baselines on synthetic data sets and real-world networks. The experimental results demonstrate that TVAE has superior performance and lower time cost compared with the baselines. |
| Author | Jing, Xin Jiao, Pengfei Wu, Huaming Guo, Xuan Pan, Shirui Gong, Maoguo Wang, Wenjun He, Dongxiao |
| Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0003-1049-1002 surname: Jiao fullname: Jiao, Pengfei email: pjiao@tju.edu.cn organization: Center of Biosafety Research and Strategy, Law School, Tianjin University, Tianjin, China – sequence: 2 givenname: Xuan orcidid: 0000-0001-8569-4192 surname: Guo fullname: Guo, Xuan email: guoxuan@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Xin surname: Jing fullname: Jing, Xin email: jingxin1895@gmail.com organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 4 givenname: Dongxiao orcidid: 0000-0002-1915-4179 surname: He fullname: He, Dongxiao email: hedongxiao@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 5 givenname: Huaming orcidid: 0000-0002-4761-9973 surname: Wu fullname: Wu, Huaming email: whming@tju.edu.cn organization: Center for Applied Mathematics, Tianjin University, Tianjin, China – sequence: 6 givenname: Shirui orcidid: 0000-0003-0794-527X surname: Pan fullname: Pan, Shirui email: shirui.pan@monash.edu organization: Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, VIC, Australia – sequence: 7 givenname: Maoguo orcidid: 0000-0002-0415-8556 surname: Gong fullname: Gong, Maoguo email: gong@ieee.org organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 8 givenname: Wenjun orcidid: 0000-0003-1174-7241 surname: Wang fullname: Wang, Wenjun email: wjwang@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34106869$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtvEzEQxy1URB_0C4CELHHpJcHvxzGqwkshVCIgbpbtnYDbXTv1bkB8ezZNyKEH5jKj0e8_M5r_OTrJJQNCLyiZUkrsm9VyufgyZYTRKSdGWKmfoDNGFZswbszJsdbfT9Fl39-SMRSRSthn6JQLSpRR9gzdrKDblOpbvIThd6l3eN4FaJqUf-B1qXiR8h2-qdCkOKSS8a_k8bfZHH8sKQ94NgyQH_qfIP70OfXdc_R07dseLg_5An19O19dv58sPr_7cD1bTCKXdJhYHYkK3kZvNedUgWZehobHoKQMnvp1IzXQQEgEr3yjSAxC6saYYI0yhF-gq_3cTS33W-gH16U-Qtv6DGXbOya5NcYIQUf09SP0tmxrHq9zTAumCSdqR706UNvQQeM2NXW-_nH_fjUCbA_EWvq-wvqIUOJ2nrgHT9zOE3fwZBSZR6KYBr972VB9av8vfbmXJgA47rJCWGE4_ws1Wpf8 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s10489_023_04887_9 crossref_primary_10_3390_rs16061055 crossref_primary_10_3390_s23229125 crossref_primary_10_3390_math13050807 crossref_primary_10_1080_07421222_2025_2452016 crossref_primary_10_1109_ACCESS_2024_3483839 crossref_primary_10_1016_j_dsp_2024_104660 crossref_primary_10_1016_j_technovation_2025_103289 crossref_primary_10_1109_TNNLS_2023_3328924 crossref_primary_10_1145_3674834 crossref_primary_10_1016_j_knosys_2024_111929 crossref_primary_10_1186_s42400_024_00237_5 crossref_primary_10_1109_TKDE_2023_3295367 crossref_primary_10_1109_TNNLS_2024_3398253 crossref_primary_10_1002_asi_24711 crossref_primary_10_1109_TNNLS_2025_3545021 crossref_primary_10_1109_TNNLS_2023_3234005 crossref_primary_10_1109_TNNLS_2024_3359275 crossref_primary_10_7717_peerj_cs_822 crossref_primary_10_1016_j_neunet_2024_106979 crossref_primary_10_1109_TCSS_2024_3457897 crossref_primary_10_1109_TKDE_2022_3144250 crossref_primary_10_1109_TKDE_2023_3304478 crossref_primary_10_3390_su14084473 crossref_primary_10_1109_TKDE_2021_3124061 crossref_primary_10_1007_s10055_022_00689_5 crossref_primary_10_1109_JAS_2023_123450 crossref_primary_10_1109_TNSE_2022_3164659 crossref_primary_10_1109_TNNLS_2024_3394161 crossref_primary_10_1109_TSC_2024_3486171 crossref_primary_10_1007_s10994_023_06473_z crossref_primary_10_1109_TNNLS_2024_3384348 crossref_primary_10_3389_frai_2023_1256352 crossref_primary_10_1007_s13042_025_02659_0 crossref_primary_10_1016_j_future_2021_08_005 crossref_primary_10_1016_j_eswa_2023_122596 crossref_primary_10_1109_ACCESS_2025_3587793 |
| Cites_doi | 10.1145/980972.980992 10.1109/TNNLS.2019.2920267 10.1145/2623330.2623733 10.1145/3292500.3330895 10.1609/aaai.v32i1.11257 10.1145/2736277.2741093 10.1145/2806416.2806512 10.1007/s11227-017-2225-1 10.1109/TKDE.2018.2849727 10.1609/aaai.v31i1.10488 10.1609/aaai.v35i5.16583 10.1145/3336191.3371845 10.24963/ijcai.2018/288 10.1109/TBDATA.2018.2850013 10.1109/TNNLS.2020.2978386 10.1145/3340531.3411946 10.1609/aaai.v34i04.5984 10.1145/2939672.2939751 10.1109/TNNLS.2019.2945869 10.1145/3442381.3449914 10.1093/bioinformatics/bty294 10.1145/3363574 10.1109/TNNLS.2019.2919764 10.1145/3357384.3357943 10.1145/3219819.3220024 10.1145/1921632.1921636 10.1109/TNNLS.2018.2869225 10.1145/1081870.1081893 10.1145/2623330.2623732 10.1145/1401890.1401972 10.1145/2939672.2939754 10.1109/2945.841119 10.1145/1217299.1217301 10.1002/asi.20591 10.1007/978-3-319-73198-8_10 10.1016/j.knosys.2019.06.024 10.1109/MCI.2019.2919396 10.1137/1.9781611972818.31 10.1109/TKDE.2016.2591009 10.1145/2939672.2939753 10.1145/3132847.3132919 10.24963/ijcai.2019/548 10.1038/nprot.2009.177 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2021.3084957 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 7413 |
| ExternalDocumentID | 34106869 10_1109_TNNLS_2021_3084957 9449483 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFC0809804 funderid: 10.13039/501100012166 – fundername: Tianjin Municipal Science and Technology Project grantid: 19ZXZNGX00030 – fundername: National Natural Science Foundation of China grantid: 61902278; 62071327; 61876128 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-97c06ba9ca973316e72a5bd3cb655ba1afd57e1b00cea6ad60cb457d88b986803 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732095200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 10:59:37 EDT 2025 Sun Nov 09 06:46:10 EST 2025 Thu Jan 02 22:53:12 EST 2025 Sat Nov 29 01:40:13 EST 2025 Tue Nov 18 22:12:50 EST 2025 Wed Aug 27 02:18:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-97c06ba9ca973316e72a5bd3cb655ba1afd57e1b00cea6ad60cb457d88b986803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1915-4179 0000-0002-4761-9973 0000-0003-0794-527X 0000-0003-1174-7241 0000-0002-0415-8556 0000-0003-1049-1002 0000-0001-8569-4192 |
| PMID | 34106869 |
| PQID | 2742703061 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9449483 pubmed_primary_34106869 proquest_miscellaneous_2539888441 proquest_journals_2742703061 crossref_primary_10_1109_TNNLS_2021_3084957 crossref_citationtrail_10_1109_TNNLS_2021_3084957 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref10 ref17 ref16 kipf (ref30) 2016 ref19 ref18 nguyen (ref46) 2048 freeman (ref2) 2000; 1 ref51 trivedi (ref40) 2017; 70 ref45 maheshwari (ref43) 2019 ref48 ref47 ref42 kipf (ref38) 2017 ref41 ref44 ref8 ref7 rossi (ref50) 2020 ref9 ref4 ref3 ref6 ref35 kazemi (ref24) 2020; 21 ref34 ref37 ref36 ref31 ref33 xu (ref49) 2020 mehran kazemi (ref23) 2019 ref39 goyal (ref29) 2018 theocharidis (ref1) 2009; 4 kingma (ref57) 2014 zhang (ref21) 2020 ref26 ref20 chen (ref54) 2018 ji (ref11) 2021 ref22 hamilton (ref5) 2017; 40 ref28 ref27 veli?kovi? (ref32) 2018 marinka (ref60) 2018; 34 hamilton (ref25) 2017 ref61 |
| References_xml | – year: 2016 ident: ref30 article-title: Variational graph auto-encoders publication-title: Proc NIPS Workshop Bayesian Deep Learn – ident: ref4 doi: 10.1145/980972.980992 – start-page: 969 year: 2048 ident: ref46 article-title: Continuous-time dynamic network embeddings publication-title: Proc Companion Web Conf – ident: ref17 doi: 10.1109/TNNLS.2019.2920267 – ident: ref10 doi: 10.1145/2623330.2623733 – ident: ref48 doi: 10.1145/3292500.3330895 – ident: ref26 doi: 10.1609/aaai.v32i1.11257 – ident: ref14 doi: 10.1145/2736277.2741093 – ident: ref15 doi: 10.1145/2806416.2806512 – ident: ref35 doi: 10.1007/s11227-017-2225-1 – ident: ref6 doi: 10.1109/TKDE.2018.2849727 – ident: ref34 doi: 10.1609/aaai.v31i1.10488 – year: 2020 ident: ref50 article-title: Temporal graph networks for deep learning on dynamic graphs publication-title: Proc Int Conf Learn Represent – year: 2017 ident: ref38 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc Int Conf Learn Represent – ident: ref45 doi: 10.1609/aaai.v35i5.16583 – ident: ref42 doi: 10.1145/3336191.3371845 – start-page: 1024 year: 2017 ident: ref25 article-title: Inductive representation learning on large graphs publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.24963/ijcai.2018/288 – start-page: 1 year: 2018 ident: ref32 article-title: Graph attention networks publication-title: Proc Int Conf Learn Represent – ident: ref20 doi: 10.1109/TBDATA.2018.2850013 – ident: ref19 doi: 10.1109/TNNLS.2020.2978386 – ident: ref51 doi: 10.1145/3340531.3411946 – ident: ref58 doi: 10.1609/aaai.v34i04.5984 – ident: ref16 doi: 10.1145/2939672.2939751 – volume: 40 start-page: 52 year: 2017 ident: ref5 article-title: Representation learning on graphs: Methods and applications publication-title: IEEE Data Eng Bull – ident: ref18 doi: 10.1109/TNNLS.2019.2945869 – ident: ref36 doi: 10.1145/3442381.3449914 – volume: 34 start-page: 457i year: 2018 ident: ref60 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume: 21 start-page: 1 year: 2020 ident: ref24 article-title: Representation learning for dynamic graphs: A survey publication-title: J Mach Learn Res – start-page: 1 year: 2019 ident: ref43 article-title: DynGAN: Generative adversarial networks for dynamic network embedding publication-title: Proc Graph Represent Learn Workshop (NeurIPS) – ident: ref31 doi: 10.1145/3363574 – ident: ref33 doi: 10.1109/TNNLS.2019.2919764 – ident: ref47 doi: 10.1145/3357384.3357943 – year: 2014 ident: ref57 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent – ident: ref41 doi: 10.1145/3219819.3220024 – ident: ref53 doi: 10.1145/1921632.1921636 – year: 2018 ident: ref54 article-title: GC-LSTM: Graph convolution embedded lstm for dynamic link prediction publication-title: arXiv 1812 04206 – ident: ref22 doi: 10.1109/TNNLS.2018.2869225 – ident: ref59 doi: 10.1145/1081870.1081893 – volume: 70 start-page: 3462 year: 2017 ident: ref40 article-title: Know-evolve: Deep temporal reasoning for dynamic knowledge graphs publication-title: Proc 34th Int Conf Mach Learn (JMLR) – year: 2018 ident: ref29 article-title: DynGEM: Deep embedding method for dynamic graphs publication-title: arXiv 1805 11273 – ident: ref13 doi: 10.1145/2623330.2623732 – ident: ref8 doi: 10.1145/1401890.1401972 – ident: ref12 doi: 10.1145/2939672.2939754 – ident: ref3 doi: 10.1109/2945.841119 – ident: ref39 doi: 10.1145/1217299.1217301 – volume: 1 start-page: 4 year: 2000 ident: ref2 article-title: Visualizing social networks publication-title: J Social Structure – year: 2020 ident: ref21 article-title: Deep learning on graphs: A survey publication-title: IEEE Trans Knowl Data Eng – ident: ref52 doi: 10.1002/asi.20591 – ident: ref55 doi: 10.1007/978-3-319-73198-8_10 – ident: ref61 doi: 10.1016/j.knosys.2019.06.024 – ident: ref9 doi: 10.1109/MCI.2019.2919396 – year: 2021 ident: ref11 article-title: A survey on knowledge graphs: Representation, acquisition, and applications publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref7 doi: 10.1137/1.9781611972818.31 – year: 2019 ident: ref23 article-title: Representation learning for dynamic graphs: A survey publication-title: arXiv 1905 11485 – ident: ref56 doi: 10.1109/TKDE.2016.2591009 – ident: ref37 doi: 10.1145/2939672.2939753 – start-page: 1 year: 2020 ident: ref49 article-title: Inductive representation learning on temporal graphs publication-title: Proc Int Conf Learn Represent – ident: ref27 doi: 10.1145/3132847.3132919 – ident: ref44 doi: 10.24963/ijcai.2019/548 – volume: 4 start-page: 1535 year: 2009 ident: ref1 article-title: Network visualization and analysis of gene expression data using biolayout express 3D publication-title: Nature Protocols doi: 10.1038/nprot.2009.177 |
| SSID | ssj0000605649 |
| Score | 2.5835621 |
| Snippet | Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7400 |
| SubjectTerms | Embedding Heredity Inheritances Learning Link prediction Logic gates Matrix decomposition Network analysis Network topologies Network topology Neural networks Neural Networks, Computer Parameters Predictive models Recurrent neural networks Regularization Representations self-attention mechanism Social networking (online) Task analysis temporal network embedding (TNE) Topology variational autoencoder (VAE) |
| Title | Temporal Network Embedding for Link Prediction via VAE Joint Attention Mechanism |
| URI | https://ieeexplore.ieee.org/document/9449483 https://www.ncbi.nlm.nih.gov/pubmed/34106869 https://www.proquest.com/docview/2742703061 https://www.proquest.com/docview/2539888441 |
| Volume | 33 |
| WOSCitedRecordID | wos000732095200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EMvTdv04TYNKvTWOrFlW4_jUjaUkpqFbsPejDTSwkLiLbve_P5q5AcU2kJvBo9ko5mRZjSPD-BDWWlEa_NUGuRp6UqdGm4xJUCUtXEGTWzXdHsj61qtVnpxBJ-mWhjvfUw-85f0GGP5bosHuiq70iU1MymO4VhK0ddqTfcpWbDLRbR2eS54ygu5GmtkMn21rOub78Eb5PllkangFBD4XtjAqUBC_3YkRYyVv5ub8di5Pv2_H34KTwbzks16eXgGR759DqcjdAMbNPkMFsu-JdUdq_s8cDa_t97RQcaCGcvIRWWLHUVxiHPsYWPY7WzOvm43bcdmXddnSbJvniqHN_v7F_Djer78_CUdwBVSLKq8S7XETFij0WiCbRReclNZV6AVVWVNbtaukj4PWoneCONEhraspFPKaiVUVryEk3bb-tfAFFaoZaBHV5YuXytbhIHCepVxjxwTyMf1bXDoPE4AGHdN9EAy3UT2NMSeZmBPAh-nMT_7vhv_pD6jxZ8oh3VP4HxkYzOo5r6h2DRtcyJP4P30OigVRUpM67eHQFMVWikVTMUEXvXsn-YepebNn7_5Fh5zqpCIGS_ncNLtDv4dPMKHbrPfXQTJXamLKLm_AKET6AQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQvDBiDwAAj8QbZYid27McKdRrQRZUoU98if1WqtKWoTff343M-JCRA4i1Szk5057PvfB8_gA8FV9YaQ9NSW5YWrlCpZsamCIiy0k5bHds1Xc_KqpLLpZofwKexFsZ7H5PP_Bk-xli-29g9XpWdqwKbmeT34D4vCpZ11VrjjUoWLHMR7V1GBUtZXi6HKplMnS-qavY9-IOMnuWZDG4Bwu-FLRxLJNRvh1JEWfm7wRkPnouj__vlJ_C4NzDJpFsRT-HAN8_gaABvIL0uH8N80TWluiFVlwlOprfGOzzKSDBkCTqpZL7FOA7KjtytNbmeTMnXzbppyaRtuzxJcuWxdni9u30OPy6mi8-XaQ-vkNqc0zZVpc2E0cpqhcCNwpdMc-NyawTnRlO9crz0NOil9VpoJzJrCl46KY2SQmb5CRw2m8a_BCItt6oM9NYVhaMrafIwUBgvM-YtswnQgb-17XuPIwTGTR19kEzVUTw1iqfuxZPAx3HMz67zxj-pj5H5I2XP9wROBzHWvXLuaoxO40YnaALvx9dBrTBWohu_2QcanispZTAWE3jRiX-ce1g1r_78zXfw8HJxNatnX6pvr-ERw3qJmP9yCoftdu_fwAN7165327dx_f4CYZHqYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Network+Embedding+for+Link+Prediction+via+VAE+Joint+Attention+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jiao%2C+Pengfei&rft.au=Guo%2C+Xuan&rft.au=Xin+Jing&rft.au=He%2C+Dongxiao&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=12&rft.spage=7400&rft_id=info:doi/10.1109%2FTNNLS.2021.3084957&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |