Location-Aware and Regularization-Adaptive Correlation Filters for Robust Visual Tracking

Correlation filter (CF) has recently been widely used for visual tracking. The estimation of the search window and the filter-learning strategies is the key component of the CF trackers. Nevertheless, prevalent CF models separately address these issues in heuristic manners. The commonly used CF mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2430 - 2442
Main Authors: Liu, Risheng, Chen, Qianru, Yao, Yuansheng, Fan, Xin, Luo, Zhongxuan
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Correlation filter (CF) has recently been widely used for visual tracking. The estimation of the search window and the filter-learning strategies is the key component of the CF trackers. Nevertheless, prevalent CF models separately address these issues in heuristic manners. The commonly used CF models directly set the estimated location in the previous frame as the search center for the current one. Moreover, these models usually rely on simple and fixed regularization for filter learning, and thus, their performance is compromised by the search window size and optimization heuristics. To break these limits, this article proposes a location-aware and regularization-adaptive CF (LRCF) for robust visual tracking. LRCF establishes a novel bilevel optimization model to address simultaneously the location-estimation and filter-training problems. We prove that our bilevel formulation can successfully obtain a globally converged CF and the corresponding object location in a collaborative manner. Moreover, based on the LRCF framework, we design two trackers named LRCF-S and LRCF-SA and a series of comparisons to prove the flexibility and effectiveness of the LRCF framework. Extensive experiments on different challenging benchmark data sets demonstrate that our LRCF trackers perform favorably against the state-of-the-art methods in practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3005447