Learning Skill Characteristics From Manipulations

Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 9727 - 9741
Main Authors: Zhou, Xiao-Hu, Xie, Xiao-Liang, Liu, Shi-Qi, Ni, Zhen-Liang, Zhou, Yan-Jie, Li, Rui-Qi, Gui, Mei-Jiang, Fan, Chen-Chen, Feng, Zhen-Qiu, Bian, Gui-Bin, Hou, Zeng-Guang
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.
AbstractList Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.
Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.
Author Fan, Chen-Chen
Xie, Xiao-Liang
Zhou, Yan-Jie
Gui, Mei-Jiang
Li, Rui-Qi
Zhou, Xiao-Hu
Ni, Zhen-Liang
Hou, Zeng-Guang
Liu, Shi-Qi
Feng, Zhen-Qiu
Bian, Gui-Bin
Author_xml – sequence: 1
  givenname: Xiao-Hu
  orcidid: 0000-0002-7602-4848
  surname: Zhou
  fullname: Zhou, Xiao-Hu
  email: xiaohu.zhou@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xiao-Liang
  orcidid: 0000-0002-6227-4811
  surname: Xie
  fullname: Xie, Xiao-Liang
  email: xiaoliang.xie@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Shi-Qi
  surname: Liu
  fullname: Liu, Shi-Qi
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Zhen-Liang
  orcidid: 0000-0002-3358-1994
  surname: Ni
  fullname: Ni, Zhen-Liang
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Yan-Jie
  orcidid: 0000-0001-7191-4449
  surname: Zhou
  fullname: Zhou, Yan-Jie
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Rui-Qi
  orcidid: 0000-0001-6630-7644
  surname: Li
  fullname: Li, Rui-Qi
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Mei-Jiang
  orcidid: 0000-0001-9803-891X
  surname: Gui
  fullname: Gui, Mei-Jiang
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 8
  givenname: Chen-Chen
  orcidid: 0000-0001-8806-2166
  surname: Fan
  fullname: Fan, Chen-Chen
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 9
  givenname: Zhen-Qiu
  surname: Feng
  fullname: Feng, Zhen-Qiu
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 10
  givenname: Gui-Bin
  orcidid: 0000-0003-4708-2245
  surname: Bian
  fullname: Bian, Gui-Bin
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 11
  givenname: Zeng-Guang
  orcidid: 0000-0002-1534-5840
  surname: Hou
  fullname: Hou, Zeng-Guang
  email: zengguang.hou@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35333726$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PAzEMhiME4vsPgIQqsbC0xPm6ZEQVBaQCAyCxRWnig8D1riR3A_-eg5YODHixh-e1rWePbNZNjYQcAR0BUHP-eHc3fRgxytiIg6IgzQbZZaDYkHGtN9dz8bxDDnN-o30pKpUw22SHS855wdQugSm6VMf6ZfDwHqtqMH51yfkWU8xt9HkwSc18cOvquOgq18amzgdkq3RVxsNV3ydPk8vH8fVwen91M76YDj2X0A61L2lpnJIBDRRlcKCDCTPDi0LPMMxU4TUzQaDD0jPnveLeBS2FRAdBKL5PzpZ7F6n56DC3dh6zx6pyNTZdtkwJQRkYMD16-gd9a7pU999Zpo3UWgCDnjpZUd1sjsEuUpy79Gl_ZfQAWwI-NTknLNcIUPst3f5It9_S7Up6H9J_Qj62P6ba5GL1f_R4GY2IuL5lCgFaSP4FdlGOSg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JBHI_2023_3289548
crossref_primary_10_1017_S0263574722001527
crossref_primary_10_1109_TCYB_2025_3533139
crossref_primary_10_1109_TNNLS_2024_3438368
crossref_primary_10_1109_TASE_2023_3345927
crossref_primary_10_1109_TIE_2022_3232669
crossref_primary_10_1109_JSEN_2025_3558981
crossref_primary_10_1109_TIM_2024_3381290
Cites_doi 10.1007/s10439-017-1791-y
10.1016/j.ejvs.2010.04.022
10.1109/TNNLS.2013.2248094
10.1016/j.amjsurg.2005.08.008
10.1109/TIM.2019.2945467
10.1109/ROBOT.2006.1641780
10.1541/ieejias.132.241
10.1109/TNNLS.2020.2964737
10.1109/TNNLS.2020.2964037
10.1007/978-3-319-30634-6_5
10.4103/0256-4602.64604.2010
10.1109/TBME.2017.2706499
10.1002/rcs.301
10.1109/TNNLS.2014.2361026
10.1016/j.ejvs.2013.03.006
10.1109/TITB.2009.2029614
10.1007/s00464-013-3334-4
10.1016/S0140-6736(19)31997-X
10.1109/TBME.2008.921148
10.1109/TBCAS.2019.2892411
10.1109/TOH.2011.31
10.1016/j.ejvs.2009.03.008
10.1109/THMS.2017.2776603
10.1002/rcs.1467
10.1109/TBME.2013.2290052
10.1109/TNNLS.2020.3008938
10.1109/TNNLS.2017.2669522
10.1016/j.ejvs.2013.02.004
10.1109/TNNLS.2020.2978613
10.1109/TNNLS.2014.2303086
10.1109/TNNLS.2018.2886341
10.1016/S0002-9610(97)89597-9
10.1007/s00270-006-0161-1
10.1109/TCYB.2020.3004653
10.1016/j.jvs.2009.08.101
10.1016/j.jvs.2004.09.028
10.1109/ACCESS.2020.2980579
10.1109/TBME.2010.2077291
10.1109/TNNLS.2017.2755595
10.1109/TNNLS.2014.2334366
10.1109/TBME.2011.2167324
10.4293/JSLS.2014.00234
10.1109/TNNLS.2013.2280271
10.1109/THMS.2016.2545247
10.1109/LRA.2020.2989075
10.2307/1939574
10.1109/TOH.2010.19
10.1109/TBME.2012.2230260
10.1109/TNNLS.2020.3009448
10.1161/STROKEAHA.112.673152
10.1201/b12207
10.1109/TBME.2019.2913431
10.1109/TSMC.2018.2876465
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3160159
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 9741
ExternalDocumentID 35333726
10_1109_TNNLS_2022_3160159
9741845
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS)
  grantid: 2020140
  funderid: 10.13039/501100002367
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1311700
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62003343; 62073325; U1913601; 61720106012; U20A20224; U1913210
  funderid: 10.13039/501100001809
– fundername: Strategic Priority Research Program of CAS
  grantid: XDB32040000
  funderid: 10.13039/501100002367
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-8cf0f9a65de917fda18d9db93778bedb67c829d4eaefc2acc63cad8545ea1d463
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777301700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Sep 25 08:34:30 EDT 2025
Sun Nov 09 07:23:29 EST 2025
Thu Jan 02 22:22:40 EST 2025
Tue Nov 18 22:53:29 EST 2025
Sat Nov 29 01:40:19 EST 2025
Wed Aug 27 02:07:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-8cf0f9a65de917fda18d9db93778bedb67c829d4eaefc2acc63cad8545ea1d463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8806-2166
0000-0003-4708-2245
0000-0002-6227-4811
0000-0002-1534-5840
0000-0002-7602-4848
0000-0001-7191-4449
0000-0001-9803-891X
0000-0001-6630-7644
0000-0002-3358-1994
PMID 35333726
PQID 2895884121
PQPubID 85436
PageCount 15
ParticipantIDs proquest_journals_2895884121
pubmed_primary_35333726
crossref_primary_10_1109_TNNLS_2022_3160159
crossref_citationtrail_10_1109_TNNLS_2022_3160159
ieee_primary_9741845
proquest_miscellaneous_2644021919
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref13
  doi: 10.1007/s10439-017-1791-y
– ident: ref6
  doi: 10.1016/j.ejvs.2010.04.022
– ident: ref43
  doi: 10.1109/TNNLS.2013.2248094
– ident: ref2
  doi: 10.1016/j.amjsurg.2005.08.008
– ident: ref34
  doi: 10.1109/TIM.2019.2945467
– ident: ref14
  doi: 10.1109/ROBOT.2006.1641780
– ident: ref22
  doi: 10.1541/ieejias.132.241
– ident: ref49
  doi: 10.1109/TNNLS.2020.2964737
– ident: ref29
  doi: 10.1109/TNNLS.2020.2964037
– ident: ref53
  doi: 10.1007/978-3-319-30634-6_5
– ident: ref35
  doi: 10.4103/0256-4602.64604.2010
– ident: ref11
  doi: 10.1109/TBME.2017.2706499
– ident: ref20
  doi: 10.1002/rcs.301
– ident: ref47
  doi: 10.1109/TNNLS.2014.2361026
– ident: ref17
  doi: 10.1016/j.ejvs.2013.03.006
– ident: ref26
  doi: 10.1109/TITB.2009.2029614
– ident: ref27
  doi: 10.1007/s00464-013-3334-4
– ident: ref1
  doi: 10.1016/S0140-6736(19)31997-X
– ident: ref9
  doi: 10.1109/TBME.2008.921148
– ident: ref36
  doi: 10.1109/TBCAS.2019.2892411
– ident: ref23
  doi: 10.1109/TOH.2011.31
– ident: ref8
  doi: 10.1016/j.ejvs.2009.03.008
– ident: ref25
  doi: 10.1109/THMS.2017.2776603
– ident: ref21
  doi: 10.1002/rcs.1467
– ident: ref33
  doi: 10.1109/TBME.2013.2290052
– ident: ref40
  doi: 10.1109/TNNLS.2020.3008938
– ident: ref48
  doi: 10.1109/TNNLS.2017.2669522
– ident: ref18
  doi: 10.1016/j.ejvs.2013.02.004
– ident: ref30
  doi: 10.1109/TNNLS.2020.2978613
– ident: ref41
  doi: 10.1109/TNNLS.2014.2303086
– ident: ref44
  doi: 10.1109/TNNLS.2018.2886341
– ident: ref4
  doi: 10.1016/S0002-9610(97)89597-9
– ident: ref7
  doi: 10.1007/s00270-006-0161-1
– ident: ref37
  doi: 10.1109/TCYB.2020.3004653
– ident: ref5
  doi: 10.1016/j.jvs.2009.08.101
– ident: ref16
  doi: 10.1016/j.jvs.2004.09.028
– ident: ref28
  doi: 10.1109/ACCESS.2020.2980579
– ident: ref42
  doi: 10.1109/TBME.2010.2077291
– ident: ref46
  doi: 10.1109/TNNLS.2017.2755595
– ident: ref51
  doi: 10.1109/TNNLS.2014.2334366
– ident: ref32
  doi: 10.1109/TBME.2011.2167324
– ident: ref24
  doi: 10.4293/JSLS.2014.00234
– ident: ref50
  doi: 10.1109/TNNLS.2013.2280271
– ident: ref10
  doi: 10.1109/THMS.2016.2545247
– ident: ref12
  doi: 10.1109/LRA.2020.2989075
– ident: ref52
  doi: 10.2307/1939574
– ident: ref15
  doi: 10.1109/TOH.2010.19
– ident: ref19
  doi: 10.1109/TBME.2012.2230260
– ident: ref31
  doi: 10.1109/TNNLS.2020.3009448
– ident: ref3
  doi: 10.1161/STROKEAHA.112.673152
– ident: ref45
  doi: 10.1201/b12207
– ident: ref39
  doi: 10.1109/TBME.2019.2913431
– ident: ref38
  doi: 10.1109/TSMC.2018.2876465
SSID ssj0000605649
Score 2.5030797
Snippet Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9727
SubjectTerms Algorithms
Animal models
Animals
Arteries
Cardiovascular disease
Coronary arteriosclerosis
Coronary artery disease
Ensemble learning
Feature extraction
Fiber optics
Heart diseases
Humans
In vivo
In vivo methods and tests
in vivo porcine studies
Learning
Machine learning
Measurement
Neural Networks, Computer
Percutaneous Coronary Intervention
Robotics
Sensor phenomena and characterization
Sensors
skill characteristics
Surgery
Swine
Task analysis
wavelet packet decomposition (WPD)
Wavelet transforms
Wrist
Title Learning Skill Characteristics From Manipulations
URI https://ieeexplore.ieee.org/document/9741845
https://www.ncbi.nlm.nih.gov/pubmed/35333726
https://www.proquest.com/docview/2895884121
https://www.proquest.com/docview/2644021919
Volume 34
WOSCitedRecordID wos000777301700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHjx_VgfSwVvWm2SNmmOIi4e1kVQYW8lTVJZXLuyD3-_k_SBggreSpukZTJpvi_JfANwxlUhmc7x72ekQYKSRGFuCAutKFLJdZzzwuvM9sVgkA6H8mEJLtpYGGutP3xmL92l38s3E71wS2VX0kmtxMkyLAshqlitdj0lQlzOPdqlhNOQMjFsYmQiefU0GPQfkQ1SiiQVOUji1EIZQh0mnKzClynJ51j5HW76aae38b8P3oT1Gl4G15U_bMGSLbdho0ndENQjeQdIrav6Ejy-jsbj4Oa7bnPQm07egntVjpr0XrNdeO7dPt3chXX2hFCzhMzDVBdRIRVPjEVKVhhFXHfkCEdEmluTc6FTKk1slS00VVpzppVJEVFZRUzM2R6slJPSHkBQUMRhCitGaRxrSnLpVOMiZvCuUpJ1gDQGzHQtLe4yXIwzTzEimXn7Z87-WW3_Dpy3dd4rYY0_S-8467Yla8N24Ljpp6wee7MMKaSLviWUdOC0fYyjxm2FqNJOFlgGYSCiG0mw5f2qf9u2G7c4_PmdR7DmUs5XR1qOYWU-XdgTWNUf89Fs2kXXHKZd75qf6EHcUg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL20aaF9Wbq267x1qwt7W91Yki1bj6UsZNQxg2aQNyNL8gjLnJGP_f5dyR-ssA72Zuwr2VxJ1jmS7rkAH7isBFMl_v200EhQ4jAoNWGBSapUcBWVvHI6s1mS5-l8Lr7swU0fC2OMcYfPzK29dHv5eqV2dqlsJKzUShTvw0EcRZQ00Vr9ikqIyJw7vEsJpwFlybyLkgnFaJbn2SPyQUqRpiILia1eKEOwwxIrrPDHpOSyrDwPON3EMx7-3yefwIsWYPp3TY94CXumPoVhl7zBb8fyGZBWWfWb__h9sVz690-Vm_3xevXDn8p60SX42pzD1_Gn2f0kaPMnBIrFZBukqgorIXmsDZKySktiG6REQJKkpdElT1RKhY6MNJWiUinOlNQpYiojiY44ewWDelWb1-BXFJGYxIJhGkWKklJY3biQabwrpWAekM6BhWrFxW2Oi2XhSEYoCuf_wvq_aP3vwce-zM9GWuOf1mfWu71l61gPLrt2KtrRtymQRNr4W0KJB9f9Yxw3djNE1ma1QxsEgohvBMGaL5r27evuusWbv7_zCo4ms2lWZJ_zh7dwbBPQNwdcLmGwXe_MOzhUv7aLzfq966C_AVZ-3rE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Skill+Characteristics+From+Manipulations&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhou%2C+Xiao-Hu&rft.au=Xie%2C+Xiao-Liang&rft.au=Liu%2C+Shi-Qi&rft.au=Ni%2C+Zhen-Liang&rft.date=2023-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=12&rft.spage=9727&rft_id=info:doi/10.1109%2FTNNLS.2022.3160159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon