Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach
We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 5; pp. 889 - 902 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets. |
|---|---|
| AbstractList | We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets. |
| Author | Jianming Zhang Sclaroff, Stan |
| Author_xml | – sequence: 1 surname: Jianming Zhang fullname: Jianming Zhang email: jmzhang@bu.edu organization: Dept. of Comput. Sci., Boston Univ., Boston, MA, USA – sequence: 2 givenname: Stan surname: Sclaroff fullname: Sclaroff, Stan email: sclaroff@cs.bu.edu organization: Dept. of Comput. Sci., Boston Univ., Boston, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26336114$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtP3DAURi1EBQPlD1CpitQNmwx-P7qb8pZAVALWlnHuUKOMHexEKv--CTOwYNGVN-fc6_t9e2g7pggIHRI8JwSb4_vfi5urOcVEzClXTHO-hWaUSFwbaug2mmEiaa011btor5RnjAkXmO2gXSoZk4TwGbo8-9u1KfQhPlV3Q85piA00EUqplilXd64NEP1rdQo9-D6k-LNaVL9SasHF6sZ11aLrcnL-z1f0ZenaAgebdx89nJ_dn1zW17cXVyeL69ozQfpaOya0EspRKp0yjmujhAHz2Cy9055O13CppTbMaCEFAeVBKCEbJryihu2jo_Xcce3LAKW3q1A8tK2LkIZiiVKGE84VGdEfn9DnNOQ4_m6ktMJcczJR3zfU8LiCxnY5rFx-te8ZjYBeAz6nUjIsrQ-9m7LoswutJdhOddi3Oux0gN3UMar0k_o-_b_St7UUAOBDUGNgmgn2D5feknc |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_imavis_2021_104216 crossref_primary_10_1109_ACCESS_2019_2960807 crossref_primary_10_1007_s11042_017_5032_z crossref_primary_10_1016_j_image_2022_116873 crossref_primary_10_1016_j_image_2021_116477 crossref_primary_10_1007_s00371_020_02050_w crossref_primary_10_3390_rs16244806 crossref_primary_10_1007_s11042_019_07842_4 crossref_primary_10_1016_j_cag_2020_03_006 crossref_primary_10_1016_j_image_2020_116082 crossref_primary_10_1109_ACCESS_2017_2689776 crossref_primary_10_1016_j_imavis_2023_104744 crossref_primary_10_1109_ACCESS_2018_2882014 crossref_primary_10_1109_TIM_2022_3216675 crossref_primary_10_1007_s10462_019_09777_6 crossref_primary_10_1109_TMM_2018_2864613 crossref_primary_10_1007_s11042_021_10568_x crossref_primary_10_1016_j_jvcir_2019_102662 crossref_primary_10_1016_j_imavis_2017_11_004 crossref_primary_10_1016_j_neucom_2017_03_016 crossref_primary_10_1109_LGRS_2019_2957851 crossref_primary_10_1109_TCSVT_2018_2883305 crossref_primary_10_1007_s11042_020_10374_x crossref_primary_10_1109_TMM_2020_2987682 crossref_primary_10_1007_s11042_020_09467_4 crossref_primary_10_1007_s11263_020_01371_6 crossref_primary_10_1109_ACCESS_2019_2958058 crossref_primary_10_1109_TIP_2018_2885229 crossref_primary_10_1016_j_image_2018_02_010 crossref_primary_10_1016_j_image_2018_07_009 crossref_primary_10_1007_s11760_017_1186_4 crossref_primary_10_1002_ima_22351 crossref_primary_10_1016_j_patcog_2017_11_024 crossref_primary_10_3389_fncom_2020_541581 crossref_primary_10_1016_j_neucom_2022_09_107 crossref_primary_10_1016_j_optlastec_2025_113034 crossref_primary_10_1016_j_jvcir_2021_103236 crossref_primary_10_3389_fpsyg_2018_00417 crossref_primary_10_1007_s00371_019_01750_2 crossref_primary_10_1007_s11063_022_10875_w crossref_primary_10_1007_s10489_020_01857_3 crossref_primary_10_3390_electronics11081180 crossref_primary_10_1029_2023EA003422 crossref_primary_10_1109_TIP_2017_2733164 crossref_primary_10_1049_iet_ipr_2017_0267 crossref_primary_10_1109_TIP_2018_2868561 crossref_primary_10_1109_TPAMI_2024_3516874 crossref_primary_10_1016_j_eswa_2025_126912 crossref_primary_10_1016_j_image_2018_03_020 crossref_primary_10_1109_TCSVT_2016_2642341 crossref_primary_10_1007_s11042_017_5541_9 crossref_primary_10_1109_TIP_2017_2767288 crossref_primary_10_3390_jimaging4100114 crossref_primary_10_1587_transinf_2017EDP7413 crossref_primary_10_1016_j_patcog_2020_107234 crossref_primary_10_1109_TCDS_2017_2696439 crossref_primary_10_3390_s19010216 crossref_primary_10_1007_s10851_019_00882_3 crossref_primary_10_1109_TVCG_2018_2866106 crossref_primary_10_1016_j_visres_2023_108304 crossref_primary_10_1109_ACCESS_2020_3014886 crossref_primary_10_1051_jnwpu_20193730503 crossref_primary_10_1098_rsos_180596 crossref_primary_10_1016_j_dsp_2018_12_006 crossref_primary_10_1109_TPAMI_2021_3051099 crossref_primary_10_1109_TPAMI_2018_2858783 crossref_primary_10_1371_journal_pone_0181543 crossref_primary_10_1016_j_jvcir_2019_02_026 crossref_primary_10_1109_JSTSP_2020_2966864 crossref_primary_10_1109_TPAMI_2024_3393571 crossref_primary_10_1109_ACCESS_2022_3225918 crossref_primary_10_1016_j_eswa_2021_116282 crossref_primary_10_1016_j_neucom_2018_10_089 crossref_primary_10_1109_TIM_2025_3574913 crossref_primary_10_1109_TIP_2025_3578264 crossref_primary_10_1109_TMM_2020_2991523 crossref_primary_10_1007_s11263_023_01950_3 crossref_primary_10_1016_j_neucom_2017_05_050 crossref_primary_10_1016_j_neucom_2021_06_029 crossref_primary_10_1016_j_imavis_2021_104149 crossref_primary_10_1109_TGRS_2024_3376456 crossref_primary_10_1049_iet_cvi_2018_5013 crossref_primary_10_1007_s11263_021_01478_4 crossref_primary_10_1109_ACCESS_2021_3095284 crossref_primary_10_1109_TCDS_2021_3052526 crossref_primary_10_1007_s11042_022_12470_6 crossref_primary_10_1016_j_jvcir_2020_102913 crossref_primary_10_1007_s11042_017_5052_8 crossref_primary_10_1016_j_jvcir_2017_11_002 crossref_primary_10_3390_electronics8121538 crossref_primary_10_1109_TIP_2021_3050861 crossref_primary_10_1109_TCSVT_2018_2870954 crossref_primary_10_3389_fpsyg_2017_00418 crossref_primary_10_1109_TCYB_2022_3209978 crossref_primary_10_1016_j_image_2018_03_007 crossref_primary_10_1109_TPAMI_2019_2900649 crossref_primary_10_1109_TITS_2020_3044678 crossref_primary_10_3389_fnhum_2022_862588 crossref_primary_10_1007_s00521_022_07772_7 crossref_primary_10_1007_s11042_020_08644_9 crossref_primary_10_1109_TCSVT_2019_2909427 crossref_primary_10_1109_TIP_2020_3036749 crossref_primary_10_1109_TBC_2023_3242150 crossref_primary_10_1016_j_cag_2020_06_007 crossref_primary_10_1186_s13173_018_0073_3 crossref_primary_10_1016_j_cag_2018_01_010 crossref_primary_10_1016_j_patcog_2020_107308 crossref_primary_10_3390_electronics12020449 crossref_primary_10_1109_TIP_2020_3016464 crossref_primary_10_1016_j_sigpro_2020_107586 crossref_primary_10_1109_TMM_2023_3321394 crossref_primary_10_1007_s11633_018_1126_y crossref_primary_10_1016_j_patcog_2020_107275 crossref_primary_10_1049_iet_ipr_2016_0754 crossref_primary_10_1007_s11042_019_08184_x crossref_primary_10_1016_j_isprsjprs_2022_10_008 crossref_primary_10_1109_TPAMI_2018_2840724 crossref_primary_10_1016_j_jvcir_2021_103206 crossref_primary_10_1109_TPAMI_2020_3028509 crossref_primary_10_1007_s00371_016_1278_0 crossref_primary_10_1016_j_neucom_2023_126577 crossref_primary_10_3390_s21206825 crossref_primary_10_1109_TIP_2019_2894284 crossref_primary_10_1007_s00521_020_04819_5 crossref_primary_10_1007_s13748_022_00280_8 |
| Cites_doi | 10.1016/j.visres.2005.03.019 10.1109/TPAMI.2012.89 10.1109/CVPR.2012.6247711 10.1006/cviu.2002.0974 10.1109/ICCV.2009.5459462 10.1109/83.217222 10.1109/CVPR.2009.5206573 10.1038/nn0901-937 10.1109/ICCV.2013.118 10.1167/9.3.5 10.1016/j.cviu.2014.03.007 10.1126/science.7134969 10.1126/science.1061133 10.1016/0010-0285(80)90005-5 10.1109/ICCV.2013.26 10.1007/s00426-004-0174-9 10.1109/CVPR.2014.358 10.1109/TPAMI.2012.147 10.1016/j.visres.2008.09.007 10.1109/CVPR.2007.383267 10.1109/34.55110 10.1109/CVPR.2009.5206767 10.1167/9.12.15 10.1109/CVPR.2004.1315142 10.1109/CVPR.2013.407 10.1111/j.1467-9280.2008.02140.x 10.1038/nrn1411 10.1167/8.7.32 10.1007/978-3-642-33712-3_3 10.1109/TPAMI.2012.101 10.3758/BF03194414 10.5244/C.22.111 10.1037/0033-295X.114.3.599 10.1109/TPAMI.2014.2345401 10.1016/j.imavis.2011.11.007 10.1109/TPAMI.2013.158 10.1117/1.JEI.23.5.053023 10.1167/13.4.11 10.1007/978-3-642-33709-3_60 10.1007/978-1-4613-8643-8 10.1109/TCSVT.2005.859028 10.1109/CVPR.2011.5995676 10.1109/34.730558 10.1109/TPAMI.2011.146 10.1016/j.cviu.2012.10.011 10.1016/j.visres.2004.09.017 10.1109/TPAMI.2004.1261076 10.1109/CVPR.2013.101 10.1109/TPAMI.2011.272 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2015.2473844 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 902 |
| ExternalDocumentID | 4046422831 26336114 10_1109_TPAMI_2015_2473844 7226835 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: US National Science Foundation grantid: 1059218; 1029430 funderid: 10.13039/100000001 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-8a358757a226a79a489759e9bdfca8c220154686893985651e7ce5756d35c7293 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 185 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374164700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 |
| IngestDate | Thu Oct 02 10:21:46 EDT 2025 Sun Nov 30 04:36:56 EST 2025 Mon Jul 21 05:40:21 EDT 2025 Sat Nov 29 05:15:57 EST 2025 Tue Nov 18 22:17:44 EST 2025 Wed Aug 27 02:47:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Boolean map minimum barrier distance eye fixation prediction Saliency detection |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-8a358757a226a79a489759e9bdfca8c220154686893985651e7ce5756d35c7293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26336114 |
| PQID | 1787048411 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2015_2473844 ieee_primary_7226835 pubmed_primary_26336114 crossref_primary_10_1109_TPAMI_2015_2473844 proquest_miscellaneous_1779414471 proquest_journals_1787048411 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-May-1 2016-5-1 2016-May 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-May-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref10 ref16 ref19 ref18 borji (ref42) 0 harel (ref28) 0; 19 palmer (ref17) 1999 ref51 ref50 ref46 lu (ref29) 2014; 36 ref45 kümmerer (ref39) 0 ref48 judd (ref61) 2012 ref47 koffka (ref11) 1935 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 kienzle (ref37) 0 ref6 ref5 tavakoli (ref24) 0 rubin (ref12) 1958 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 schauerte (ref35) 0 cerf (ref54) 0 ref23 ref26 ref25 ref20 ref22 ref21 han (ref40) 0 ref27 ref60 hou (ref34) 2012; 34 |
| References_xml | – ident: ref60 doi: 10.1016/j.visres.2005.03.019 – ident: ref7 doi: 10.1109/TPAMI.2012.89 – ident: ref10 doi: 10.1109/CVPR.2012.6247711 – ident: ref51 doi: 10.1006/cviu.2002.0974 – ident: ref19 doi: 10.1109/ICCV.2009.5459462 – ident: ref50 doi: 10.1109/83.217222 – year: 1999 ident: ref17 publication-title: Vision Science Photons to phenomenology – ident: ref4 doi: 10.1109/CVPR.2009.5206573 – ident: ref15 doi: 10.1038/nn0901-937 – ident: ref59 doi: 10.1109/ICCV.2013.118 – start-page: 194 year: 1958 ident: ref12 article-title: Figure and ground publication-title: Readings in Perception – ident: ref9 doi: 10.1167/9.3.5 – ident: ref22 doi: 10.1016/j.cviu.2014.03.007 – ident: ref41 doi: 10.1126/science.7134969 – start-page: 666 year: 0 ident: ref24 article-title: Fast and efficient saliency detection using sparse sampling and kernel density estimation publication-title: Proc Image Anal – ident: ref16 doi: 10.1126/science.1061133 – start-page: 241 year: 0 ident: ref54 article-title: Predicting human gaze using low-level saliency combined with face detection publication-title: Proc Adv Neural Inf Process Syst 20 – ident: ref1 doi: 10.1016/0010-0285(80)90005-5 – ident: ref20 doi: 10.1109/ICCV.2013.26 – start-page: 116 year: 0 ident: ref35 article-title: Quaternion-based spectral saliency detection for eye fixation prediction publication-title: Proc 12th Eur Conf Comput Vis – ident: ref13 doi: 10.1007/s00426-004-0174-9 – ident: ref38 doi: 10.1109/CVPR.2014.358 – ident: ref36 doi: 10.1109/TPAMI.2012.147 – ident: ref27 doi: 10.1016/j.visres.2008.09.007 – ident: ref33 doi: 10.1109/CVPR.2007.383267 – ident: ref49 doi: 10.1109/34.55110 – ident: ref45 doi: 10.1109/CVPR.2009.5206767 – ident: ref23 doi: 10.1167/9.12.15 – ident: ref3 doi: 10.1109/CVPR.2004.1315142 – ident: ref56 doi: 10.1109/CVPR.2013.407 – ident: ref14 doi: 10.1111/j.1467-9280.2008.02140.x – ident: ref18 doi: 10.1038/nrn1411 – start-page: 689 year: 0 ident: ref37 article-title: A nonparametric approach to bottom-up visual saliency publication-title: Proc Adv Neural Inf Process Syst 19 – year: 2012 ident: ref61 article-title: A benchmark of computational models of saliency to predict human fixations – ident: ref26 doi: 10.1167/8.7.32 – ident: ref44 doi: 10.1007/978-3-642-33712-3_3 – ident: ref5 doi: 10.1109/TPAMI.2012.101 – ident: ref48 doi: 10.3758/BF03194414 – ident: ref53 doi: 10.5244/C.22.111 – ident: ref46 doi: 10.1037/0033-295X.114.3.599 – ident: ref43 doi: 10.1109/TPAMI.2014.2345401 – ident: ref30 doi: 10.1016/j.imavis.2011.11.007 – year: 0 ident: ref42 article-title: Salient object detection: A survey publication-title: ArXiv e-prints – volume: 36 start-page: 195 year: 2014 ident: ref29 article-title: Robust and efficient saliency modeling from image co-occurrence histograms publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.158 – ident: ref32 doi: 10.1117/1.JEI.23.5.053023 – ident: ref25 doi: 10.1167/13.4.11 – ident: ref6 doi: 10.1007/978-3-642-33709-3_60 – ident: ref47 doi: 10.1007/978-1-4613-8643-8 – year: 0 ident: ref39 article-title: Deep gaze I: Boosting saliency prediction with feature maps trained on imagenet publication-title: Proc ICLR Workshop – year: 1935 ident: ref11 publication-title: Principles of Gestalt Psychology – ident: ref2 doi: 10.1109/TCSVT.2005.859028 – volume: 19 start-page: 545 year: 0 ident: ref28 article-title: Graph-based visual saliency publication-title: Proc Neural Inf Process Syst – ident: ref31 doi: 10.1109/CVPR.2011.5995676 – ident: ref8 doi: 10.1109/34.730558 – volume: 34 start-page: 194 year: 2012 ident: ref34 article-title: Image signature: Highlighting sparse salient regions publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.146 – ident: ref21 doi: 10.1016/j.cviu.2012.10.011 – ident: ref58 doi: 10.1016/j.visres.2004.09.017 – ident: ref52 doi: 10.1109/TPAMI.2004.1261076 – year: 0 ident: ref40 article-title: Unifying computational models for visual attention publication-title: Proc INCF Japan Node Int Workshop Adv Neuroinformatics – ident: ref55 doi: 10.1109/CVPR.2013.101 – ident: ref57 doi: 10.1109/TPAMI.2011.272 |
| SSID | ssj0014503 |
| Score | 2.6205523 |
| Snippet | We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 889 |
| SubjectTerms | Boolean map Computational modeling eye fixation prediction Image color analysis Machine intelligence minimum barrier distance Pattern recognition Predictive models Saliency detection Transforms Visualization |
| Title | Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach |
| URI | https://ieeexplore.ieee.org/document/7226835 https://www.ncbi.nlm.nih.gov/pubmed/26336114 https://www.proquest.com/docview/1787048411 https://www.proquest.com/docview/1779414471 |
| Volume | 38 |
| WOSCitedRecordID | wos000374164700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9U-tA-1Fb7ca1KCn1rVy-b7Cbp26kV-6AIWri3ZS47giC7ct717-9M9oMW2kLfFnZ2EzIzyS_JzPwAPrqYL5BxUJZHObohX2doFyZzOI3FlNDk2JFNuMtLP5-Hqw34PObCEFEKPqNDeUx3-XUb13JUduQYKzBi2IRN51yXqzXeGNgisSAzgmEP523EkCAzDUc3V7OLbxLFVRzm1hlvhYwnL40ptba_rUeJYOXvWDOtOWfb_9fbF_C8x5Zq1hnDS9igZge2B94G1bvxDjz7pQjhLpynMLw7CX9W1-vlUniWqJYZUDGgVdcM1CU9U53SKoVtNV_UTB237T1hoy7wQc36suSv4PvZ15uT86znV8iiKfQq82gKqWeP3FF0Aa0PrggUFvVtRB9zGTFb-pIhTfAM_DS5SAzvytoUkUG5eQ1bTdvQW1CFR4wh8vbJoy21D3XukKFlHfTCWDIT0MMoV7EvPi4cGPdV2oRMQ5WUVEmTVa-kCXwav3noSm_8U3pXVDBK9qM_gb1BmVXvnY-VllnKeqv1BD6Mr9mv5LIEG2rXIsMzFe82Hcu86Yxg_PdgO-_-3OZ7eMo9K7uwyD3YWi3XtA9P4o_V3ePygI137g-S8f4Eh0DlkA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFdQHq63W06oRfNNtL5tkk_h2fpQr9o5CT-jbMpcdoVB2y_Wuf7-T7AcKKvi2sLObkJlJfklm5gfwzoZ8iYyDsjzEoxtyVYZ6qTKL42DGhCrHlmzCzufu4sKfbcGHIReGiFLwGR3Gx3SXXzVhE4_KjixjBUYMd-Cu0TqXbbbWcGegTeJBZgzDPs4biT5FZuyPFmeT2UmM4zKHubbK6UjHkxdKFVLq31akRLHyd7SZVp3jnf_r72N41KFLMWnN4QlsUb0LOz1zg-gceRce_lKGcA-mKRDvMgZAi_PNahWZlqiKc6BgSCvOGarHBE3xhdYpcKv-KCbiU9NcEdZihtdi0hUmfwrfj78uPk-zjmEhC8rIdeZQmVjRHrmjaD1q563x5JfVj4Au5HHEdOEKBjXeMfSTZAMxwCsqZQLDcvUMtuumpucgjEMMPvAGyqEupPNVbpHBZeXlUmlSI5D9KJehKz8eWTCuyrQNGfsyKamMTZadkkbwfvjmui2-8U_pvaiCQbIb_REc9MosO_-8KWWcp7TTUo7g7fCaPStel2BNzSbK8FzF-03LMvutEQz_7m3nxZ_bfAP3p4vZaXl6Mv_2Eh5wL4s2SPIAtterDb2Ce-F2fXmzep1M-Cc5E-fv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Surroundedness+for+Saliency+Detection%3A+A+Boolean+Map+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Jianming&rft.au=Sclaroff%2C+Stan&rft.date=2016-05-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=38&rft.issue=5&rft.spage=889&rft.epage=902&rft_id=info:doi/10.1109%2FTPAMI.2015.2473844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2015_2473844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |