Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach

We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 5; pp. 889 - 902
Main Authors: Jianming Zhang, Sclaroff, Stan
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.
AbstractList We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.
Author Jianming Zhang
Sclaroff, Stan
Author_xml – sequence: 1
  surname: Jianming Zhang
  fullname: Jianming Zhang
  email: jmzhang@bu.edu
  organization: Dept. of Comput. Sci., Boston Univ., Boston, MA, USA
– sequence: 2
  givenname: Stan
  surname: Sclaroff
  fullname: Sclaroff, Stan
  email: sclaroff@cs.bu.edu
  organization: Dept. of Comput. Sci., Boston Univ., Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26336114$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAURi1EBQPlD1CpitQNmwx-P7qb8pZAVALWlnHuUKOMHexEKv--CTOwYNGVN-fc6_t9e2g7pggIHRI8JwSb4_vfi5urOcVEzClXTHO-hWaUSFwbaug2mmEiaa011btor5RnjAkXmO2gXSoZk4TwGbo8-9u1KfQhPlV3Q85piA00EUqplilXd64NEP1rdQo9-D6k-LNaVL9SasHF6sZ11aLrcnL-z1f0ZenaAgebdx89nJ_dn1zW17cXVyeL69ozQfpaOya0EspRKp0yjmujhAHz2Cy9055O13CppTbMaCEFAeVBKCEbJryihu2jo_Xcce3LAKW3q1A8tK2LkIZiiVKGE84VGdEfn9DnNOQ4_m6ktMJcczJR3zfU8LiCxnY5rFx-te8ZjYBeAz6nUjIsrQ-9m7LoswutJdhOddi3Oux0gN3UMar0k_o-_b_St7UUAOBDUGNgmgn2D5feknc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_imavis_2021_104216
crossref_primary_10_1109_ACCESS_2019_2960807
crossref_primary_10_1007_s11042_017_5032_z
crossref_primary_10_1016_j_image_2022_116873
crossref_primary_10_1016_j_image_2021_116477
crossref_primary_10_1007_s00371_020_02050_w
crossref_primary_10_3390_rs16244806
crossref_primary_10_1007_s11042_019_07842_4
crossref_primary_10_1016_j_cag_2020_03_006
crossref_primary_10_1016_j_image_2020_116082
crossref_primary_10_1109_ACCESS_2017_2689776
crossref_primary_10_1016_j_imavis_2023_104744
crossref_primary_10_1109_ACCESS_2018_2882014
crossref_primary_10_1109_TIM_2022_3216675
crossref_primary_10_1007_s10462_019_09777_6
crossref_primary_10_1109_TMM_2018_2864613
crossref_primary_10_1007_s11042_021_10568_x
crossref_primary_10_1016_j_jvcir_2019_102662
crossref_primary_10_1016_j_imavis_2017_11_004
crossref_primary_10_1016_j_neucom_2017_03_016
crossref_primary_10_1109_LGRS_2019_2957851
crossref_primary_10_1109_TCSVT_2018_2883305
crossref_primary_10_1007_s11042_020_10374_x
crossref_primary_10_1109_TMM_2020_2987682
crossref_primary_10_1007_s11042_020_09467_4
crossref_primary_10_1007_s11263_020_01371_6
crossref_primary_10_1109_ACCESS_2019_2958058
crossref_primary_10_1109_TIP_2018_2885229
crossref_primary_10_1016_j_image_2018_02_010
crossref_primary_10_1016_j_image_2018_07_009
crossref_primary_10_1007_s11760_017_1186_4
crossref_primary_10_1002_ima_22351
crossref_primary_10_1016_j_patcog_2017_11_024
crossref_primary_10_3389_fncom_2020_541581
crossref_primary_10_1016_j_neucom_2022_09_107
crossref_primary_10_1016_j_optlastec_2025_113034
crossref_primary_10_1016_j_jvcir_2021_103236
crossref_primary_10_3389_fpsyg_2018_00417
crossref_primary_10_1007_s00371_019_01750_2
crossref_primary_10_1007_s11063_022_10875_w
crossref_primary_10_1007_s10489_020_01857_3
crossref_primary_10_3390_electronics11081180
crossref_primary_10_1029_2023EA003422
crossref_primary_10_1109_TIP_2017_2733164
crossref_primary_10_1049_iet_ipr_2017_0267
crossref_primary_10_1109_TIP_2018_2868561
crossref_primary_10_1109_TPAMI_2024_3516874
crossref_primary_10_1016_j_eswa_2025_126912
crossref_primary_10_1016_j_image_2018_03_020
crossref_primary_10_1109_TCSVT_2016_2642341
crossref_primary_10_1007_s11042_017_5541_9
crossref_primary_10_1109_TIP_2017_2767288
crossref_primary_10_3390_jimaging4100114
crossref_primary_10_1587_transinf_2017EDP7413
crossref_primary_10_1016_j_patcog_2020_107234
crossref_primary_10_1109_TCDS_2017_2696439
crossref_primary_10_3390_s19010216
crossref_primary_10_1007_s10851_019_00882_3
crossref_primary_10_1109_TVCG_2018_2866106
crossref_primary_10_1016_j_visres_2023_108304
crossref_primary_10_1109_ACCESS_2020_3014886
crossref_primary_10_1051_jnwpu_20193730503
crossref_primary_10_1098_rsos_180596
crossref_primary_10_1016_j_dsp_2018_12_006
crossref_primary_10_1109_TPAMI_2021_3051099
crossref_primary_10_1109_TPAMI_2018_2858783
crossref_primary_10_1371_journal_pone_0181543
crossref_primary_10_1016_j_jvcir_2019_02_026
crossref_primary_10_1109_JSTSP_2020_2966864
crossref_primary_10_1109_TPAMI_2024_3393571
crossref_primary_10_1109_ACCESS_2022_3225918
crossref_primary_10_1016_j_eswa_2021_116282
crossref_primary_10_1016_j_neucom_2018_10_089
crossref_primary_10_1109_TIM_2025_3574913
crossref_primary_10_1109_TIP_2025_3578264
crossref_primary_10_1109_TMM_2020_2991523
crossref_primary_10_1007_s11263_023_01950_3
crossref_primary_10_1016_j_neucom_2017_05_050
crossref_primary_10_1016_j_neucom_2021_06_029
crossref_primary_10_1016_j_imavis_2021_104149
crossref_primary_10_1109_TGRS_2024_3376456
crossref_primary_10_1049_iet_cvi_2018_5013
crossref_primary_10_1007_s11263_021_01478_4
crossref_primary_10_1109_ACCESS_2021_3095284
crossref_primary_10_1109_TCDS_2021_3052526
crossref_primary_10_1007_s11042_022_12470_6
crossref_primary_10_1016_j_jvcir_2020_102913
crossref_primary_10_1007_s11042_017_5052_8
crossref_primary_10_1016_j_jvcir_2017_11_002
crossref_primary_10_3390_electronics8121538
crossref_primary_10_1109_TIP_2021_3050861
crossref_primary_10_1109_TCSVT_2018_2870954
crossref_primary_10_3389_fpsyg_2017_00418
crossref_primary_10_1109_TCYB_2022_3209978
crossref_primary_10_1016_j_image_2018_03_007
crossref_primary_10_1109_TPAMI_2019_2900649
crossref_primary_10_1109_TITS_2020_3044678
crossref_primary_10_3389_fnhum_2022_862588
crossref_primary_10_1007_s00521_022_07772_7
crossref_primary_10_1007_s11042_020_08644_9
crossref_primary_10_1109_TCSVT_2019_2909427
crossref_primary_10_1109_TIP_2020_3036749
crossref_primary_10_1109_TBC_2023_3242150
crossref_primary_10_1016_j_cag_2020_06_007
crossref_primary_10_1186_s13173_018_0073_3
crossref_primary_10_1016_j_cag_2018_01_010
crossref_primary_10_1016_j_patcog_2020_107308
crossref_primary_10_3390_electronics12020449
crossref_primary_10_1109_TIP_2020_3016464
crossref_primary_10_1016_j_sigpro_2020_107586
crossref_primary_10_1109_TMM_2023_3321394
crossref_primary_10_1007_s11633_018_1126_y
crossref_primary_10_1016_j_patcog_2020_107275
crossref_primary_10_1049_iet_ipr_2016_0754
crossref_primary_10_1007_s11042_019_08184_x
crossref_primary_10_1016_j_isprsjprs_2022_10_008
crossref_primary_10_1109_TPAMI_2018_2840724
crossref_primary_10_1016_j_jvcir_2021_103206
crossref_primary_10_1109_TPAMI_2020_3028509
crossref_primary_10_1007_s00371_016_1278_0
crossref_primary_10_1016_j_neucom_2023_126577
crossref_primary_10_3390_s21206825
crossref_primary_10_1109_TIP_2019_2894284
crossref_primary_10_1007_s00521_020_04819_5
crossref_primary_10_1007_s13748_022_00280_8
Cites_doi 10.1016/j.visres.2005.03.019
10.1109/TPAMI.2012.89
10.1109/CVPR.2012.6247711
10.1006/cviu.2002.0974
10.1109/ICCV.2009.5459462
10.1109/83.217222
10.1109/CVPR.2009.5206573
10.1038/nn0901-937
10.1109/ICCV.2013.118
10.1167/9.3.5
10.1016/j.cviu.2014.03.007
10.1126/science.7134969
10.1126/science.1061133
10.1016/0010-0285(80)90005-5
10.1109/ICCV.2013.26
10.1007/s00426-004-0174-9
10.1109/CVPR.2014.358
10.1109/TPAMI.2012.147
10.1016/j.visres.2008.09.007
10.1109/CVPR.2007.383267
10.1109/34.55110
10.1109/CVPR.2009.5206767
10.1167/9.12.15
10.1109/CVPR.2004.1315142
10.1109/CVPR.2013.407
10.1111/j.1467-9280.2008.02140.x
10.1038/nrn1411
10.1167/8.7.32
10.1007/978-3-642-33712-3_3
10.1109/TPAMI.2012.101
10.3758/BF03194414
10.5244/C.22.111
10.1037/0033-295X.114.3.599
10.1109/TPAMI.2014.2345401
10.1016/j.imavis.2011.11.007
10.1109/TPAMI.2013.158
10.1117/1.JEI.23.5.053023
10.1167/13.4.11
10.1007/978-3-642-33709-3_60
10.1007/978-1-4613-8643-8
10.1109/TCSVT.2005.859028
10.1109/CVPR.2011.5995676
10.1109/34.730558
10.1109/TPAMI.2011.146
10.1016/j.cviu.2012.10.011
10.1016/j.visres.2004.09.017
10.1109/TPAMI.2004.1261076
10.1109/CVPR.2013.101
10.1109/TPAMI.2011.272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2473844
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 902
ExternalDocumentID 4046422831
26336114
10_1109_TPAMI_2015_2473844
7226835
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: US National Science Foundation
  grantid: 1059218; 1029430
  funderid: 10.13039/100000001
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-8a358757a226a79a489759e9bdfca8c220154686893985651e7ce5756d35c7293
IEDL.DBID RIE
ISICitedReferencesCount 185
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374164700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Thu Oct 02 10:21:46 EDT 2025
Sun Nov 30 04:36:56 EST 2025
Mon Jul 21 05:40:21 EDT 2025
Sat Nov 29 05:15:57 EST 2025
Tue Nov 18 22:17:44 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Boolean map
minimum barrier distance
eye fixation prediction
Saliency detection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-8a358757a226a79a489759e9bdfca8c220154686893985651e7ce5756d35c7293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26336114
PQID 1787048411
PQPubID 85458
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2015_2473844
ieee_primary_7226835
pubmed_primary_26336114
crossref_primary_10_1109_TPAMI_2015_2473844
proquest_miscellaneous_1779414471
proquest_journals_1787048411
PublicationCentury 2000
PublicationDate 2016-May-1
2016-5-1
2016-May
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref10
ref16
ref19
ref18
borji (ref42) 0
harel (ref28) 0; 19
palmer (ref17) 1999
ref51
ref50
ref46
lu (ref29) 2014; 36
ref45
kümmerer (ref39) 0
ref48
judd (ref61) 2012
ref47
koffka (ref11) 1935
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
kienzle (ref37) 0
ref6
ref5
tavakoli (ref24) 0
rubin (ref12) 1958
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
schauerte (ref35) 0
cerf (ref54) 0
ref23
ref26
ref25
ref20
ref22
ref21
han (ref40) 0
ref27
ref60
hou (ref34) 2012; 34
References_xml – ident: ref60
  doi: 10.1016/j.visres.2005.03.019
– ident: ref7
  doi: 10.1109/TPAMI.2012.89
– ident: ref10
  doi: 10.1109/CVPR.2012.6247711
– ident: ref51
  doi: 10.1006/cviu.2002.0974
– ident: ref19
  doi: 10.1109/ICCV.2009.5459462
– ident: ref50
  doi: 10.1109/83.217222
– year: 1999
  ident: ref17
  publication-title: Vision Science Photons to phenomenology
– ident: ref4
  doi: 10.1109/CVPR.2009.5206573
– ident: ref15
  doi: 10.1038/nn0901-937
– ident: ref59
  doi: 10.1109/ICCV.2013.118
– start-page: 194
  year: 1958
  ident: ref12
  article-title: Figure and ground
  publication-title: Readings in Perception
– ident: ref9
  doi: 10.1167/9.3.5
– ident: ref22
  doi: 10.1016/j.cviu.2014.03.007
– ident: ref41
  doi: 10.1126/science.7134969
– start-page: 666
  year: 0
  ident: ref24
  article-title: Fast and efficient saliency detection using sparse sampling and kernel density estimation
  publication-title: Proc Image Anal
– ident: ref16
  doi: 10.1126/science.1061133
– start-page: 241
  year: 0
  ident: ref54
  article-title: Predicting human gaze using low-level saliency combined with face detection
  publication-title: Proc Adv Neural Inf Process Syst 20
– ident: ref1
  doi: 10.1016/0010-0285(80)90005-5
– ident: ref20
  doi: 10.1109/ICCV.2013.26
– start-page: 116
  year: 0
  ident: ref35
  article-title: Quaternion-based spectral saliency detection for eye fixation prediction
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref13
  doi: 10.1007/s00426-004-0174-9
– ident: ref38
  doi: 10.1109/CVPR.2014.358
– ident: ref36
  doi: 10.1109/TPAMI.2012.147
– ident: ref27
  doi: 10.1016/j.visres.2008.09.007
– ident: ref33
  doi: 10.1109/CVPR.2007.383267
– ident: ref49
  doi: 10.1109/34.55110
– ident: ref45
  doi: 10.1109/CVPR.2009.5206767
– ident: ref23
  doi: 10.1167/9.12.15
– ident: ref3
  doi: 10.1109/CVPR.2004.1315142
– ident: ref56
  doi: 10.1109/CVPR.2013.407
– ident: ref14
  doi: 10.1111/j.1467-9280.2008.02140.x
– ident: ref18
  doi: 10.1038/nrn1411
– start-page: 689
  year: 0
  ident: ref37
  article-title: A nonparametric approach to bottom-up visual saliency
  publication-title: Proc Adv Neural Inf Process Syst 19
– year: 2012
  ident: ref61
  article-title: A benchmark of computational models of saliency to predict human fixations
– ident: ref26
  doi: 10.1167/8.7.32
– ident: ref44
  doi: 10.1007/978-3-642-33712-3_3
– ident: ref5
  doi: 10.1109/TPAMI.2012.101
– ident: ref48
  doi: 10.3758/BF03194414
– ident: ref53
  doi: 10.5244/C.22.111
– ident: ref46
  doi: 10.1037/0033-295X.114.3.599
– ident: ref43
  doi: 10.1109/TPAMI.2014.2345401
– ident: ref30
  doi: 10.1016/j.imavis.2011.11.007
– year: 0
  ident: ref42
  article-title: Salient object detection: A survey
  publication-title: ArXiv e-prints
– volume: 36
  start-page: 195
  year: 2014
  ident: ref29
  article-title: Robust and efficient saliency modeling from image co-occurrence histograms
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.158
– ident: ref32
  doi: 10.1117/1.JEI.23.5.053023
– ident: ref25
  doi: 10.1167/13.4.11
– ident: ref6
  doi: 10.1007/978-3-642-33709-3_60
– ident: ref47
  doi: 10.1007/978-1-4613-8643-8
– year: 0
  ident: ref39
  article-title: Deep gaze I: Boosting saliency prediction with feature maps trained on imagenet
  publication-title: Proc ICLR Workshop
– year: 1935
  ident: ref11
  publication-title: Principles of Gestalt Psychology
– ident: ref2
  doi: 10.1109/TCSVT.2005.859028
– volume: 19
  start-page: 545
  year: 0
  ident: ref28
  article-title: Graph-based visual saliency
  publication-title: Proc Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/CVPR.2011.5995676
– ident: ref8
  doi: 10.1109/34.730558
– volume: 34
  start-page: 194
  year: 2012
  ident: ref34
  article-title: Image signature: Highlighting sparse salient regions
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.146
– ident: ref21
  doi: 10.1016/j.cviu.2012.10.011
– ident: ref58
  doi: 10.1016/j.visres.2004.09.017
– ident: ref52
  doi: 10.1109/TPAMI.2004.1261076
– year: 0
  ident: ref40
  article-title: Unifying computational models for visual attention
  publication-title: Proc INCF Japan Node Int Workshop Adv Neuroinformatics
– ident: ref55
  doi: 10.1109/CVPR.2013.101
– ident: ref57
  doi: 10.1109/TPAMI.2011.272
SSID ssj0014503
Score 2.6205523
Snippet We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 889
SubjectTerms Boolean map
Computational modeling
eye fixation prediction
Image color analysis
Machine intelligence
minimum barrier distance
Pattern recognition
Predictive models
Saliency detection
Transforms
Visualization
Title Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach
URI https://ieeexplore.ieee.org/document/7226835
https://www.ncbi.nlm.nih.gov/pubmed/26336114
https://www.proquest.com/docview/1787048411
https://www.proquest.com/docview/1779414471
Volume 38
WOSCitedRecordID wos000374164700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9U-tA-1Fb7ca1KCn1rVy-b7Cbp26kV-6AIWri3ZS47giC7ct717-9M9oMW2kLfFnZ2EzIzyS_JzPwAPrqYL5BxUJZHObohX2doFyZzOI3FlNDk2JFNuMtLP5-Hqw34PObCEFEKPqNDeUx3-XUb13JUduQYKzBi2IRN51yXqzXeGNgisSAzgmEP523EkCAzDUc3V7OLbxLFVRzm1hlvhYwnL40ptba_rUeJYOXvWDOtOWfb_9fbF_C8x5Zq1hnDS9igZge2B94G1bvxDjz7pQjhLpynMLw7CX9W1-vlUniWqJYZUDGgVdcM1CU9U53SKoVtNV_UTB237T1hoy7wQc36suSv4PvZ15uT86znV8iiKfQq82gKqWeP3FF0Aa0PrggUFvVtRB9zGTFb-pIhTfAM_DS5SAzvytoUkUG5eQ1bTdvQW1CFR4wh8vbJoy21D3XukKFlHfTCWDIT0MMoV7EvPi4cGPdV2oRMQ5WUVEmTVa-kCXwav3noSm_8U3pXVDBK9qM_gb1BmVXvnY-VllnKeqv1BD6Mr9mv5LIEG2rXIsMzFe82Hcu86Yxg_PdgO-_-3OZ7eMo9K7uwyD3YWi3XtA9P4o_V3ePygI137g-S8f4Eh0DlkA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFdQHq63W06oRfNNtL5tkk_h2fpQr9o5CT-jbMpcdoVB2y_Wuf7-T7AcKKvi2sLObkJlJfklm5gfwzoZ8iYyDsjzEoxtyVYZ6qTKL42DGhCrHlmzCzufu4sKfbcGHIReGiFLwGR3Gx3SXXzVhE4_KjixjBUYMd-Cu0TqXbbbWcGegTeJBZgzDPs4biT5FZuyPFmeT2UmM4zKHubbK6UjHkxdKFVLq31akRLHyd7SZVp3jnf_r72N41KFLMWnN4QlsUb0LOz1zg-gceRce_lKGcA-mKRDvMgZAi_PNahWZlqiKc6BgSCvOGarHBE3xhdYpcKv-KCbiU9NcEdZihtdi0hUmfwrfj78uPk-zjmEhC8rIdeZQmVjRHrmjaD1q563x5JfVj4Au5HHEdOEKBjXeMfSTZAMxwCsqZQLDcvUMtuumpucgjEMMPvAGyqEupPNVbpHBZeXlUmlSI5D9KJehKz8eWTCuyrQNGfsyKamMTZadkkbwfvjmui2-8U_pvaiCQbIb_REc9MosO_-8KWWcp7TTUo7g7fCaPStel2BNzSbK8FzF-03LMvutEQz_7m3nxZ_bfAP3p4vZaXl6Mv_2Eh5wL4s2SPIAtterDb2Ce-F2fXmzep1M-Cc5E-fv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Surroundedness+for+Saliency+Detection%3A+A+Boolean+Map+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Jianming&rft.au=Sclaroff%2C+Stan&rft.date=2016-05-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=38&rft.issue=5&rft.spage=889&rft.epage=902&rft_id=info:doi/10.1109%2FTPAMI.2015.2473844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2015_2473844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon