Community detection in complex networks using density-based clustering algorithm and manifold learning

Like clustering analysis, community detection aims at assigning nodes in a network into different communities. Fdp is a recently proposed density-based clustering algorithm which does not need the number of clusters as prior input and the result is insensitive to its parameter. However, Fdp cannot b...

Full description

Saved in:
Bibliographic Details
Published in:Physica A Vol. 464; pp. 221 - 230
Main Authors: You, Tao, Cheng, Hui-Min, Ning, Yi-Zi, Shia, Ben-Chang, Zhang, Zhong-Yuan
Format: Journal Article
Language:English
Published: Elsevier B.V 15.12.2016
Subjects:
ISSN:0378-4371, 1873-2119
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Like clustering analysis, community detection aims at assigning nodes in a network into different communities. Fdp is a recently proposed density-based clustering algorithm which does not need the number of clusters as prior input and the result is insensitive to its parameter. However, Fdp cannot be directly applied to community detection due to its inability to recognize the community centers in the network. To solve the problem, a new community detection method (named IsoFdp) is proposed in this paper. First, we use IsoMap technique to map the network data into a low dimensional manifold which can reveal diverse pair-wised similarity. Then Fdp is applied to detect the communities in the network. An improved partition density function is proposed to select the proper number of communities automatically. We test our method on both synthetic and real-world networks, and the results demonstrate the effectiveness of our algorithm over the state-of-the-art methods. •A density-based clustering framework is proposed for community structure detection.•An improved partition density is proposed to evaluate the quality of the detected communities.•The framework is insensitive to its parameters, and easy to implement.•The comparisons performed on the synthetic benchmarks and the real-world networks show the effectiveness of the framework.
AbstractList Like clustering analysis, community detection aims at assigning nodes in a network into different communities. Fdp is a recently proposed density-based clustering algorithm which does not need the number of clusters as prior input and the result is insensitive to its parameter. However, Fdp cannot be directly applied to community detection due to its inability to recognize the community centers in the network. To solve the problem, a new community detection method (named IsoFdp) is proposed in this paper. First, we use IsoMap technique to map the network data into a low dimensional manifold which can reveal diverse pair-wised similarity. Then Fdp is applied to detect the communities in the network. An improved partition density function is proposed to select the proper number of communities automatically. We test our method on both synthetic and real-world networks, and the results demonstrate the effectiveness of our algorithm over the state-of-the-art methods. •A density-based clustering framework is proposed for community structure detection.•An improved partition density is proposed to evaluate the quality of the detected communities.•The framework is insensitive to its parameters, and easy to implement.•The comparisons performed on the synthetic benchmarks and the real-world networks show the effectiveness of the framework.
Author You, Tao
Shia, Ben-Chang
Zhang, Zhong-Yuan
Ning, Yi-Zi
Cheng, Hui-Min
Author_xml – sequence: 1
  givenname: Tao
  surname: You
  fullname: You, Tao
  organization: School of Statistics and Mathematics, Central University of Finance and Economics, Haidian District, Beijing 100081, China
– sequence: 2
  givenname: Hui-Min
  surname: Cheng
  fullname: Cheng, Hui-Min
  organization: School of Statistics and Mathematics, Central University of Finance and Economics, Haidian District, Beijing 100081, China
– sequence: 3
  givenname: Yi-Zi
  surname: Ning
  fullname: Ning, Yi-Zi
  organization: School of Statistics and Mathematics, Central University of Finance and Economics, Haidian District, Beijing 100081, China
– sequence: 4
  givenname: Ben-Chang
  surname: Shia
  fullname: Shia, Ben-Chang
  organization: Big Data Research Center & School of Management, School of Health Care Administration, Taipei Medical University, Taiwan
– sequence: 5
  givenname: Zhong-Yuan
  surname: Zhang
  fullname: Zhang, Zhong-Yuan
  email: zhyuanzh@gmail.com
  organization: School of Statistics and Mathematics, Central University of Finance and Economics, Haidian District, Beijing 100081, China
BookMark eNqFkLtOAzEQRS0UJBLgC2j8A7v4sc-CAkW8pEg0UFteezZx2LUj2wHy93gJFQVUo9G9Z6Q5CzSzzgJCV5TklNDqepvvNocgc5aWnNQ5YeUJmtOm5hmjtJ2hOeF1kxW8pmdoEcKWEEJrzuaoX7px3FsTD1hDBBWNs9hYrNy4G-ATW4gfzr8FvA_GrlPHhtTNOhlAYzXsQwQ_BXJYO2_iZsTSajxKa3o3aDyA9DblF-i0l0OAy595jl7v716Wj9nq-eFpebvKFC9pzBrWFVS3XBa9Uk1ZUa06xjoi27okVQ9EtSnuaq0bVjUAXVtQojghielYx_k5ao93lXcheOiFMlFOT0UvzSAoEZMwsRXfwsQkTJBaJGGJ5b_YnTej9Id_qJsjBemtdwNeBGXAKtDGJ51CO_Mn_wW1houa
CitedBy_id crossref_primary_10_1016_j_eswa_2020_113689
crossref_primary_10_1016_j_knosys_2018_06_021
crossref_primary_10_1109_ACCESS_2019_2946080
crossref_primary_10_1016_j_physa_2019_04_030
crossref_primary_10_1109_TII_2022_3210028
crossref_primary_10_1016_j_physa_2017_09_090
crossref_primary_10_1089_big_2020_0133
crossref_primary_10_1007_s12652_019_01241_1
crossref_primary_10_1038_s41598_018_26415_3
crossref_primary_10_1016_j_physa_2019_121070
crossref_primary_10_1109_TETC_2017_2751101
crossref_primary_10_1155_2021_1772407
crossref_primary_10_1007_s10489_018_1386_9
crossref_primary_10_1109_ACCESS_2020_3018941
crossref_primary_10_1007_s11082_017_1080_x
crossref_primary_10_1016_j_neucom_2020_07_080
crossref_primary_10_1155_2019_8292485
crossref_primary_10_1155_2020_9017239
crossref_primary_10_2174_1574893614666190416152025
crossref_primary_10_1109_TII_2022_3188963
crossref_primary_10_1016_j_physa_2017_01_036
crossref_primary_10_1155_2021_8848566
crossref_primary_10_1016_j_physa_2018_06_091
crossref_primary_10_1016_j_knosys_2018_09_024
crossref_primary_10_1016_j_neucom_2018_06_058
crossref_primary_10_1016_j_physa_2018_02_174
crossref_primary_10_1088_1742_5468_ab00eb
crossref_primary_10_1007_s13278_019_0554_1
crossref_primary_10_3390_fi17040150
crossref_primary_10_1371_journal_pone_0227244
crossref_primary_10_1016_j_physa_2018_09_186
crossref_primary_10_1002_cpe_6669
crossref_primary_10_1016_j_physa_2017_09_023
Cites_doi 10.1038/nphys2188
10.1145/1281192.1281280
10.1073/pnas.0706851105
10.1007/s10878-010-9356-0
10.1016/j.physa.2013.08.028
10.1016/j.physa.2013.05.039
10.1007/s00265-003-0651-y
10.1038/nature09182
10.1038/30918
10.1103/PhysRevE.66.066121
10.1103/PhysRevE.87.062803
10.1016/j.physrep.2009.11.002
10.1073/pnas.122653799
10.1016/j.jcss.2013.03.012
10.1016/j.physa.2005.04.022
10.1126/science.286.5439.509
10.1016/j.physa.2009.09.018
10.1142/S0129183115500965
10.1038/nphys1130
10.1073/pnas.0400054101
10.1016/j.physa.2006.07.023
10.1142/S0217984908016285
10.1016/j.physa.2010.11.027
10.1103/PhysRevE.81.046114
10.1103/PhysRevLett.100.078701
10.1142/S0219525903001067
10.1088/1742-5468/2015/01/P01001
10.1109/TKDE.2012.100
10.1126/science.290.5500.2319
10.1002/widm.30
10.1016/j.physa.2012.12.013
10.1103/PhysRevE.70.066111
10.1016/j.physa.2014.01.043
10.1126/science.1242072
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2016.07.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 230
ExternalDocumentID 10_1016_j_physa_2016_07_025
S0378437116304563
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c351t-82b41d93a4fcc8561dcb22b0a97506fe0c91d9b7dd8268eeb9410c300d93b2b33
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384382600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 02:47:28 EST 2025
Tue Nov 18 22:03:36 EST 2025
Fri Feb 23 02:34:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Community detection
Manifold learning
Density-based clustering
IsoMap
Complex network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-82b41d93a4fcc8561dcb22b0a97506fe0c91d9b7dd8268eeb9410c300d93b2b33
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2016_07_025
crossref_primary_10_1016_j_physa_2016_07_025
elsevier_sciencedirect_doi_10_1016_j_physa_2016_07_025
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References De Meo (br000155) 2014; 80
Zhang, Ahn (br000080) 2015; 26
Wang, Liu, Liu (br000160) 2013; 392
Huang (br000050) 2013; 25
Ma, Gao, Yong, Fu (br000085) 2010; 389
Zhang, Wang, Ahn (br000075) 2013; 87
Rodriguez, Laio (br000115) 2014; 344
Fortunato (br000090) 2010; 486
Caldarelli, Capocci, De Los Rios (br000145) 2002; 89
Finding Clusters of Different Sizes, Shapes, and Densities in Noisy High Dimensional Data, 2003.
Wang, Liu, Liu (br000040) 2013; 392
Serrano, Boguñá (br000140) 2003; 68
Medus, Acuna, Dorso (br000030) 2005; 358
Girvan, Newman (br000205) 2002; 99
Zhang, Wang, Zhang (br000095) 2007; 374
M. Ester, H.P. Kriegel, J. Sander, et al. A density-based algorithm for discovering clusters in large spatial databases with noise, in: Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, KDD-96.
Ronhovde, Zohar (br000185) 2015; 2015
Barabsi (br000005) 2012; 8
Jiang, Caiyan, Jian (br000055) 2013; 392
Gong, Liu, Ma (br000100) 2014; 403
Gleiser, Danon (br000225) 2003; 6
Rosvall, Bergstrom (br000035) 2008; 105
Jin, Shuliang, Chenyang (br000045) 2013; 392
Knuth (br000215) 1993
Ronhovde, Zohar (br000180) 2010; 81
Söderberg (br000150) 2002; 66
V. De silva, J. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, in: Proceedings of the Conference on Advances in Neural Information Processing Systems, NIPS, 2003.
Radicchi, Castellano, Cecconi (br000020) 2004; 101
Zhang, Li, Wang, Wang (br000065) 2012; 23
Tenenbaum, Silva, Langford (br000165) 2000; 290
Strehl, Ghosh (br000200) 2002; 3
Lusseau, Schneider, Boisseau (br000220) 2003; 54
Clauset, Newman (br000025) 2004; 70
Boguñá, Krioukov, Claffy (br000130) 2009; 1
Serrano, Krioukov, Boguñá (br000135) 2008; 100
Watts, Strogatz (br000010) 1998; 393
Lai, Hongtao (br000060) 2008; 22
Kriegel, Krõger, Sander (br000110) 2011; 1
Zhang (br000070) 2013; 56
Lancichinetti, Fortunato, Radicchi (br000210) 2008; 78
Barabsi, Albert (br000015) 1999; 286
Lu, Zhou (br000170) 2011; 390
Clustering sentences with density peaks for multi-document summarization., in: Rada Mihalcea; Joyce Yue Chai & Anoop Sarkar, ed., ’HLT-NAACL’, The Association for Computational Linguistics, pp. 1262–1267.
X. Xu, N. Yuruk, Z.T. Feng, et al. Scan: a structural clustering algorithm for networks, in: Proceedings of the 13th ACM SIGKDD International, 2007, pp. 824–833.
Ahn, Bagrow, Lehmann (br000175) 2010; 466
Zhang (10.1016/j.physa.2016.07.025_br000065) 2012; 23
Tenenbaum (10.1016/j.physa.2016.07.025_br000165) 2000; 290
Medus (10.1016/j.physa.2016.07.025_br000030) 2005; 358
10.1016/j.physa.2016.07.025_br000125
Wang (10.1016/j.physa.2016.07.025_br000160) 2013; 392
Clauset (10.1016/j.physa.2016.07.025_br000025) 2004; 70
10.1016/j.physa.2016.07.025_br000105
Gleiser (10.1016/j.physa.2016.07.025_br000225) 2003; 6
Lusseau (10.1016/j.physa.2016.07.025_br000220) 2003; 54
Barabsi (10.1016/j.physa.2016.07.025_br000015) 1999; 286
Ma (10.1016/j.physa.2016.07.025_br000085) 2010; 389
10.1016/j.physa.2016.07.025_br000120
Zhang (10.1016/j.physa.2016.07.025_br000070) 2013; 56
Ronhovde (10.1016/j.physa.2016.07.025_br000180) 2010; 81
Radicchi (10.1016/j.physa.2016.07.025_br000020) 2004; 101
Lai (10.1016/j.physa.2016.07.025_br000060) 2008; 22
Zhang (10.1016/j.physa.2016.07.025_br000080) 2015; 26
Gong (10.1016/j.physa.2016.07.025_br000100) 2014; 403
Fortunato (10.1016/j.physa.2016.07.025_br000090) 2010; 486
Kriegel (10.1016/j.physa.2016.07.025_br000110) 2011; 1
De Meo (10.1016/j.physa.2016.07.025_br000155) 2014; 80
Ahn (10.1016/j.physa.2016.07.025_br000175) 2010; 466
Wang (10.1016/j.physa.2016.07.025_br000040) 2013; 392
Zhang (10.1016/j.physa.2016.07.025_br000075) 2013; 87
Lancichinetti (10.1016/j.physa.2016.07.025_br000210) 2008; 78
Caldarelli (10.1016/j.physa.2016.07.025_br000145) 2002; 89
Jin (10.1016/j.physa.2016.07.025_br000045) 2013; 392
Boguñá (10.1016/j.physa.2016.07.025_br000130) 2009; 1
Ronhovde (10.1016/j.physa.2016.07.025_br000185) 2015; 2015
Huang (10.1016/j.physa.2016.07.025_br000050) 2013; 25
10.1016/j.physa.2016.07.025_br000195
Jiang (10.1016/j.physa.2016.07.025_br000055) 2013; 392
Serrano (10.1016/j.physa.2016.07.025_br000140) 2003; 68
Strehl (10.1016/j.physa.2016.07.025_br000200) 2002; 3
Knuth (10.1016/j.physa.2016.07.025_br000215) 1993
Watts (10.1016/j.physa.2016.07.025_br000010) 1998; 393
Söderberg (10.1016/j.physa.2016.07.025_br000150) 2002; 66
Rodriguez (10.1016/j.physa.2016.07.025_br000115) 2014; 344
Girvan (10.1016/j.physa.2016.07.025_br000205) 2002; 99
10.1016/j.physa.2016.07.025_br000190
Rosvall (10.1016/j.physa.2016.07.025_br000035) 2008; 105
Zhang (10.1016/j.physa.2016.07.025_br000095) 2007; 374
Barabsi (10.1016/j.physa.2016.07.025_br000005) 2012; 8
Lu (10.1016/j.physa.2016.07.025_br000170) 2011; 390
Serrano (10.1016/j.physa.2016.07.025_br000135) 2008; 100
References_xml – volume: 26
  start-page: 1550096
  year: 2015
  ident: br000080
  article-title: Community detection in bipartite networks using weighted symmetric binary matrix factorization
  publication-title: Internat. J. Modern Phys. C
– reference: Finding Clusters of Different Sizes, Shapes, and Densities in Noisy High Dimensional Data, 2003.
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  ident: br000200
  article-title: Cluster ensemblesa knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– volume: 390
  start-page: 1150
  year: 2011
  end-page: 1170
  ident: br000170
  article-title: Link prediction in complex networks: A survey
  publication-title: Physica A
– volume: 392
  start-page: 6578
  year: 2013
  end-page: 6586
  ident: br000160
  article-title: Fuzzy overlapping community detection based on local random walk and multidimensional scaling
  publication-title: Physica A
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: br000205
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: br000090
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
– volume: 100
  year: 2008
  ident: br000135
  article-title: Self-similarity of complex networks and hidden metric spaces
  publication-title: Phys. Rev. Lett.
– volume: 89
  year: 2002
  ident: br000145
  article-title: Scale-free networks from varying vertex intrinsic fitness
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: br000075
  article-title: Overlapping community detection in complex networks using symmetric binary matrix factorization
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– year: 1993
  ident: br000215
  article-title: The Stanford GraphBase: A Platform for Combinatorial Computing, Vol. 37
– volume: 54
  start-page: 396
  year: 2003
  end-page: 405
  ident: br000220
  article-title: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations
  publication-title: Behav. Ecol. Sociobiol.
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: br000035
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: br000115
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 66
  year: 2002
  ident: br000150
  article-title: General formalism for inhomogeneous random graphs
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– reference: Clustering sentences with density peaks for multi-document summarization., in: Rada Mihalcea; Joyce Yue Chai & Anoop Sarkar, ed., ’HLT-NAACL’, The Association for Computational Linguistics, pp. 1262–1267.
– volume: 70
  year: 2004
  ident: br000025
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– volume: 374
  start-page: 483
  year: 2007
  end-page: 490
  ident: br000095
  article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering
  publication-title: Physica A
– volume: 403
  start-page: 71
  year: 2014
  end-page: 84
  ident: br000100
  article-title: Novel heuristic density-based method for community detection in networks
  publication-title: Physica A
– volume: 1
  start-page: 231
  year: 2011
  end-page: 240
  ident: br000110
  article-title: Density-based clustering
  publication-title: Data Min. Knowl. Discov.
– volume: 68
  year: 2003
  ident: br000140
  article-title: Topology of the world trade web
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– volume: 80
  start-page: 72
  year: 2014
  end-page: 87
  ident: br000155
  article-title: Mixing local and global information for community detection in large networks
  publication-title: J. Comput. System Sci.
– volume: 22
  start-page: 1547
  year: 2008
  end-page: 1566
  ident: br000060
  article-title: Identification of community structure in complex networks using affinity propagation clustering method
  publication-title: Modern Phys. Lett. B
– volume: 56
  start-page: 1
  year: 2013
  end-page: 12
  ident: br000070
  article-title: Community structure detection in social networks based on dictionary learning
  publication-title: Sci. China Inform. Sci.
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: br000010
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
– volume: 23
  start-page: 425
  year: 2012
  end-page: 442
  ident: br000065
  article-title: Combinatorial model and algorithm for globally searching community structure in complex networks
  publication-title: J. Comb. Optim.
– volume: 8
  start-page: 14
  year: 2012
  end-page: 16
  ident: br000005
  article-title: The network takeover
  publication-title: Nat. Phys.
– reference: M. Ester, H.P. Kriegel, J. Sander, et al. A density-based algorithm for discovering clusters in large spatial databases with noise, in: Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, KDD-96.
– volume: 81
  year: 2010
  ident: br000180
  article-title: Local resolution-limit-free Potts model for community detection
  publication-title: Phys. Rev. E
– volume: 389
  start-page: 187
  year: 2010
  end-page: 197
  ident: br000085
  article-title: Semi-supervised clustering algorithm for community structure detection in complex networks
  publication-title: Physica A
– volume: 78
  year: 2008
  ident: br000210
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– volume: 392
  start-page: 4606
  year: 2013
  end-page: 4618
  ident: br000045
  article-title: Community detection in complex networks by density-based clustering
  publication-title: Physica A
– volume: 392
  start-page: 6578
  year: 2013
  end-page: 6586
  ident: br000040
  article-title: Fuzzy overlapping community detection based on local random walk and multidimensional scaling
  publication-title: Physica A
– reference: X. Xu, N. Yuruk, Z.T. Feng, et al. Scan: a structural clustering algorithm for networks, in: Proceedings of the 13th ACM SIGKDD International, 2007, pp. 824–833.
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: br000165
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: br000015
  article-title: Emergence of scaling in random networks
  publication-title: Science
– volume: 101
  start-page: 2658
  year: 2004
  end-page: 2663
  ident: br000020
  article-title: Defining and identifying communities in networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 1876
  year: 2013
  end-page: 1889
  ident: br000050
  article-title: Revealing density-based clustering structure from the core-connected tree of a network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 358
  start-page: 593
  year: 2005
  end-page: 604
  ident: br000030
  article-title: Detection of community structures in networks via global optimization
  publication-title: Physica A
– volume: 2015
  start-page: P01001
  year: 2015
  ident: br000185
  article-title: Local multiresolution order in community detection
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 6
  start-page: 565
  year: 2003
  end-page: 573
  ident: br000225
  article-title: Community structure in Jazz
  publication-title: Adv. Complex Syst.
– volume: 1
  start-page: 74
  year: 2009
  end-page: 80
  ident: br000130
  article-title: Navigability ofcomplex networks
  publication-title: Nat. Phys.
– reference: V. De silva, J. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, in: Proceedings of the Conference on Advances in Neural Information Processing Systems, NIPS, 2003.
– volume: 392
  start-page: 2182
  year: 2013
  end-page: 2194
  ident: br000055
  article-title: An efficient community detection method based on rank centrality
  publication-title: Physica A
– volume: 466
  start-page: 761
  year: 2010
  end-page: 764
  ident: br000175
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
– volume: 8
  start-page: 14
  issue: 2188
  year: 2012
  ident: 10.1016/j.physa.2016.07.025_br000005
  article-title: The network takeover
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2188
– ident: 10.1016/j.physa.2016.07.025_br000105
  doi: 10.1145/1281192.1281280
– volume: 105
  start-page: 1118
  issue: 4
  year: 2008
  ident: 10.1016/j.physa.2016.07.025_br000035
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0706851105
– volume: 78
  issue: 3
  year: 2008
  ident: 10.1016/j.physa.2016.07.025_br000210
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– volume: 23
  start-page: 425
  issue: 4
  year: 2012
  ident: 10.1016/j.physa.2016.07.025_br000065
  article-title: Combinatorial model and algorithm for globally searching community structure in complex networks
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-010-9356-0
– volume: 392
  start-page: 6578
  issue: 24
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000040
  article-title: Fuzzy overlapping community detection based on local random walk and multidimensional scaling
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.08.028
– volume: 392
  start-page: 4606
  issue: 19
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000045
  article-title: Community detection in complex networks by density-based clustering
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.05.039
– volume: 54
  start-page: 396
  issue: 4
  year: 2003
  ident: 10.1016/j.physa.2016.07.025_br000220
  article-title: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations
  publication-title: Behav. Ecol. Sociobiol.
  doi: 10.1007/s00265-003-0651-y
– volume: 466
  start-page: 761
  issue: 7307
  year: 2010
  ident: 10.1016/j.physa.2016.07.025_br000175
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
  doi: 10.1038/nature09182
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: 10.1016/j.physa.2016.07.025_br000010
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 66
  issue: 6
  year: 2002
  ident: 10.1016/j.physa.2016.07.025_br000150
  article-title: General formalism for inhomogeneous random graphs
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
  doi: 10.1103/PhysRevE.66.066121
– volume: 87
  issue: 6
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000075
  article-title: Overlapping community detection in complex networks using symmetric binary matrix factorization
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
  doi: 10.1103/PhysRevE.87.062803
– volume: 486
  start-page: 75
  issue: 3–5
  year: 2010
  ident: 10.1016/j.physa.2016.07.025_br000090
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.physa.2016.07.025_br000205
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122653799
– volume: 80
  start-page: 72
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2016.07.025_br000155
  article-title: Mixing local and global information for community detection in large networks
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2013.03.012
– volume: 358
  start-page: 593
  issue: 2
  year: 2005
  ident: 10.1016/j.physa.2016.07.025_br000030
  article-title: Detection of community structures in networks via global optimization
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.04.022
– ident: 10.1016/j.physa.2016.07.025_br000125
– volume: 3
  start-page: 583
  year: 2002
  ident: 10.1016/j.physa.2016.07.025_br000200
  article-title: Cluster ensemblesa knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– year: 1993
  ident: 10.1016/j.physa.2016.07.025_br000215
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 10.1016/j.physa.2016.07.025_br000015
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 389
  start-page: 187
  issue: 1
  year: 2010
  ident: 10.1016/j.physa.2016.07.025_br000085
  article-title: Semi-supervised clustering algorithm for community structure detection in complex networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2009.09.018
– ident: 10.1016/j.physa.2016.07.025_br000190
– volume: 56
  start-page: 1
  issue: 7
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000070
  article-title: Community structure detection in social networks based on dictionary learning
  publication-title: Sci. China Inform. Sci.
– volume: 26
  start-page: 1550096
  issue: 09
  year: 2015
  ident: 10.1016/j.physa.2016.07.025_br000080
  article-title: Community detection in bipartite networks using weighted symmetric binary matrix factorization
  publication-title: Internat. J. Modern Phys. C
  doi: 10.1142/S0129183115500965
– volume: 1
  start-page: 74
  issue: 5
  year: 2009
  ident: 10.1016/j.physa.2016.07.025_br000130
  article-title: Navigability ofcomplex networks
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1130
– volume: 101
  start-page: 2658
  issue: 9
  year: 2004
  ident: 10.1016/j.physa.2016.07.025_br000020
  article-title: Defining and identifying communities in networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400054101
– volume: 392
  start-page: 6578
  issue: 24
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000160
  article-title: Fuzzy overlapping community detection based on local random walk and multidimensional scaling
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.08.028
– volume: 374
  start-page: 483
  issue: 1
  year: 2007
  ident: 10.1016/j.physa.2016.07.025_br000095
  article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.07.023
– volume: 22
  start-page: 1547
  issue: 16
  year: 2008
  ident: 10.1016/j.physa.2016.07.025_br000060
  article-title: Identification of community structure in complex networks using affinity propagation clustering method
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S0217984908016285
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 10.1016/j.physa.2016.07.025_br000170
  article-title: Link prediction in complex networks: A survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– volume: 81
  issue: 4
  year: 2010
  ident: 10.1016/j.physa.2016.07.025_br000180
  article-title: Local resolution-limit-free Potts model for community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.046114
– volume: 100
  issue: 7
  year: 2008
  ident: 10.1016/j.physa.2016.07.025_br000135
  article-title: Self-similarity of complex networks and hidden metric spaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.078701
– volume: 6
  start-page: 565
  issue: 4
  year: 2003
  ident: 10.1016/j.physa.2016.07.025_br000225
  article-title: Community structure in Jazz
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525903001067
– volume: 2015
  start-page: P01001
  issue: 1
  year: 2015
  ident: 10.1016/j.physa.2016.07.025_br000185
  article-title: Local multiresolution order in community detection
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2015/01/P01001
– volume: 25
  start-page: 1876
  issue: 8
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000050
  article-title: Revealing density-based clustering structure from the core-connected tree of a network
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.100
– volume: 68
  issue: 6
  year: 2003
  ident: 10.1016/j.physa.2016.07.025_br000140
  article-title: Topology of the world trade web
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.physa.2016.07.025_br000165
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: 10.1016/j.physa.2016.07.025_br000195
– volume: 1
  start-page: 231
  issue: 3
  year: 2011
  ident: 10.1016/j.physa.2016.07.025_br000110
  article-title: Density-based clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1002/widm.30
– ident: 10.1016/j.physa.2016.07.025_br000120
– volume: 392
  start-page: 2182
  issue: 9
  year: 2013
  ident: 10.1016/j.physa.2016.07.025_br000055
  article-title: An efficient community detection method based on rank centrality
  publication-title: Physica A
  doi: 10.1016/j.physa.2012.12.013
– volume: 70
  issue: 6
  year: 2004
  ident: 10.1016/j.physa.2016.07.025_br000025
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys.
  doi: 10.1103/PhysRevE.70.066111
– volume: 403
  start-page: 71
  issue: 25
  year: 2014
  ident: 10.1016/j.physa.2016.07.025_br000100
  article-title: Novel heuristic density-based method for community detection in networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.01.043
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.physa.2016.07.025_br000115
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 89
  issue: 7
  year: 2002
  ident: 10.1016/j.physa.2016.07.025_br000145
  article-title: Scale-free networks from varying vertex intrinsic fitness
  publication-title: Phys. Rev. Lett.
SSID ssj0001732
Score 2.4041016
Snippet Like clustering analysis, community detection aims at assigning nodes in a network into different communities. Fdp is a recently proposed density-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 221
SubjectTerms Community detection
Complex network
Density-based clustering
IsoMap
Manifold learning
Title Community detection in complex networks using density-based clustering algorithm and manifold learning
URI https://dx.doi.org/10.1016/j.physa.2016.07.025
Volume 464
WOSCitedRecordID wos000384382600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKBxIviE8xvuQH3oqnJHYT53GgoYGgmsSQCi9RYjtbpiid2nQq7_zhnH1xGiiaAIk-RFUSt5bvl7vz5X53hLw0QpR5DJ6bUaliYPE4AysnGBjzSIscbFTgiMIfktlMzufpyWj03XNhruqkaeRmk17-V1HDORC2pc7-hbj7H4UT8B2EDkcQOxz_SPAd5QOca21ao3wyo8sdN5tJg3nfq8naRQm0TWBvvzFrzfRE1WtbOMERF-uzxbJqz7GFhq2SUS5q7btMnA2d2hOU9TYsCirE4SBfbLMHDCqV43XFPlY9ImddS5UvFfta9dGec8zgfW0a5tgPw9BE6Br6IDkT42U7nBnkacG-VXBsvHJgUO3KhDNba26ol0Ushpo1CgdGOsKXOTv6H0MRFwc2LGSrSoVYmhW51b8U1v5kZ2InAi6pdWz5DbIXJdNUjsne4buj-fveoocJx7dR3cx99SqXJ7jzV7_3cAZey-ldcqfbbtBDhMk9MjLNfXILBbZ6QMoeLLQHC60a2oGFerBQBxb6E1joFiy0BwsFsFAPFurB8pB8fnt0-uaYdZ03mOLTsGUyKkSoU56LUikJLrZWRRQVQZ7CwxuXJlApXC4SrWF3Ko0pUhEGigcBjCmigvNHZNwsGvOYUG6mhgdlyfM4Fzo0eTqFT6Gk4YWRsdonkV-tTHVl6W13lDrz-YcXmVvizC5xFiQZLPE-edUPusSqLNffHnsxZJ1jiQ5jBri5buCTfx34lNzePhDPyLhdrs1zclNdtdVq-aLD1w93xqC0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+detection+in+complex+networks+using+density-based+clustering+algorithm+and+manifold+learning&rft.jtitle=Physica+A&rft.au=You%2C+Tao&rft.au=Cheng%2C+Hui-Min&rft.au=Ning%2C+Yi-Zi&rft.au=Shia%2C+Ben-Chang&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=464&rft.spage=221&rft.epage=230&rft_id=info:doi/10.1016%2Fj.physa.2016.07.025&rft.externalDocID=S0378437116304563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon