Design of Optimal Linear Precoder and Decoder for MIMO Channels with Per Antenna Power Constraint and Imperfect CSI

This paper addresses the problem of designing joint optimum precoder and decoder for multiple-input multiple-output communication system. Conventionally, most of the joint precoder and decoder designs are based on the sum power constraint (SPC) at the transmitter and perfect channel state informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications Jg. 75; H. 2; S. 1251 - 1263
Hauptverfasser: Merline, A., Thiruvengadam, S. J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.03.2014
Springer
Schlagworte:
ISSN:0929-6212, 1572-834X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of designing joint optimum precoder and decoder for multiple-input multiple-output communication system. Conventionally, most of the joint precoder and decoder designs are based on the sum power constraint (SPC) at the transmitter and perfect channel state information (CSI). However, in practice, per-antenna power constraint is more realistic as the power at each transmit antenna is limited individually by the linearity of the power amplifier. Further, the estimate of CSI cannot be obtained perfectly by any methods. Under imperfect CSI, the aim is to design jointly optimum precoder and decoder subject to a power constraint that jointly meets both per-antenna and SPCs. The objective function is formulated into an optimization problem that minimizes the mean square error in estimating the transmitted signal. The simulation results show that the proposed scheme has a near-optimum performance under practical constraints.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-013-1421-4