Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints

This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-ba...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 29; no. 5; pp. 1732 - 1746
Main Authors: Zhang, Dan, Wang, Qing-Guo, Srinivasan, Dipti, Li, Hongyi, Yu, Li
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2017.2678681