Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints
This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-ba...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 29; no. 5; pp. 1732 - 1746 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example. |
|---|---|
| AbstractList | This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed H∞ performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example. This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example. This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example. This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example. |
| Author | Srinivasan, Dipti Yu, Li Wang, Qing-Guo Zhang, Dan Li, Hongyi |
| Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0001-5140-3588 surname: Zhang fullname: Zhang, Dan email: danzhang@zjut.edu.cn organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Qing-Guo orcidid: 0000-0002-3672-3716 surname: Wang fullname: Wang, Qing-Guo organization: Institute for Intelligent Systems, University of Johannesburg, Johannesburg, South Africa – sequence: 3 givenname: Dipti surname: Srinivasan fullname: Srinivasan, Dipti organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 4 givenname: Hongyi surname: Li fullname: Li, Hongyi email: hongyi.li@bhu.edu.cn organization: College of Engineering, Bohai University, Jinzhou, China – sequence: 5 givenname: Li surname: Yu fullname: Yu, Li organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28368834$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctu2zAQRYkiRfNofqAFCgHdZCOXL1GjZeCkD8BwF3bR7giJGsFMLdIlKaT5-9Kxk0UW5WaIwbmDuXPPyYnzDgl5x-iMMdp8Wi-Xi9WMU1bPuKpBAXtFzjhTvOQC4OT5X_86JZcx3tH8FK2UbN6QUw5CAQh5RjbX8cGZTfDOT7FYpTZhcRuTHdtkvSsGH4obG03AhOXajlis7m0yG-yLuR93W_xbLDHd-_A7Fj9t2uy74-SsOcjn3sUUWutSfEteD-024uWxXpAfn2_X86_l4vuXb_PrRWlExVJZ98AR-srIth04h0ZUhgL0uV-pATrBEZtKgalaIQ2AynCnOuikGUwnpbggV4e5u-D_TBiTHvP-uN22DrNFzQAkU1KAyujHF-idn4LL22lOecOkULXI1IcjNXUj9noX8nHCg366YQbgAJjgYww4aGPTo_-99a1mVO8T04-J6X1i-phYlvIX0qfp_xW9P4gsIj4LaoCGcir-AS4Mooo |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TCNS_2020_3035759 crossref_primary_10_1016_j_physa_2022_127851 crossref_primary_10_1109_TNNLS_2019_2927554 crossref_primary_10_1109_TNNLS_2020_3027252 crossref_primary_10_1109_TSMC_2019_2943933 crossref_primary_10_1016_j_nahs_2023_101371 crossref_primary_10_1049_iet_cta_2020_0165 crossref_primary_10_1109_TNNLS_2021_3138979 crossref_primary_10_1109_TNNLS_2021_3110321 crossref_primary_10_1016_j_jfranklin_2024_107403 crossref_primary_10_1109_JSYST_2021_3126753 crossref_primary_10_1016_j_isatra_2021_03_008 crossref_primary_10_1109_TSMC_2020_3048998 crossref_primary_10_1049_iet_cta_2019_0721 crossref_primary_10_1109_TSMC_2019_2963411 crossref_primary_10_1016_j_isatra_2020_08_001 crossref_primary_10_1109_TNNLS_2018_2829149 crossref_primary_10_1007_s10291_023_01501_w crossref_primary_10_1109_TSMC_2018_2836390 crossref_primary_10_1007_s00034_019_01334_4 crossref_primary_10_1016_j_isatra_2020_01_001 crossref_primary_10_1109_TNNLS_2022_3183447 crossref_primary_10_1007_s12083_018_0671_z crossref_primary_10_1016_j_amc_2022_127413 crossref_primary_10_1109_TNNLS_2021_3105409 crossref_primary_10_1088_1674_1056_ac0ee9 crossref_primary_10_1109_TCYB_2024_3524515 crossref_primary_10_1109_TIE_2017_2772196 crossref_primary_10_1002_rnc_5010 crossref_primary_10_1016_j_jfranklin_2018_06_004 crossref_primary_10_1109_ACCESS_2017_2741970 crossref_primary_10_1002_acs_3541 crossref_primary_10_1109_TCSI_2020_3034650 crossref_primary_10_1177_0142331218799818 crossref_primary_10_1109_TNSE_2022_3205553 crossref_primary_10_1049_iet_cta_2017_1164 crossref_primary_10_1080_23307706_2025_2451948 crossref_primary_10_1016_j_neucom_2018_07_085 crossref_primary_10_1002_rnc_4736 crossref_primary_10_1109_JSEN_2020_2972315 crossref_primary_10_1016_j_amc_2019_124857 crossref_primary_10_1007_s11071_021_07160_1 crossref_primary_10_1080_00207721_2018_1424967 crossref_primary_10_1002_acs_3675 crossref_primary_10_1109_TII_2018_2805707 crossref_primary_10_1109_TNNLS_2019_2900045 crossref_primary_10_1016_j_isatra_2021_06_013 crossref_primary_10_1109_TASE_2025_3578652 crossref_primary_10_1109_TCSII_2022_3161009 crossref_primary_10_1016_j_jfranklin_2018_07_037 crossref_primary_10_1016_j_ins_2024_120594 crossref_primary_10_1007_s00034_022_02007_5 crossref_primary_10_1002_asjc_1924 crossref_primary_10_1109_ACCESS_2017_2775606 crossref_primary_10_1016_j_ins_2019_09_050 crossref_primary_10_1109_TNNLS_2019_2953649 crossref_primary_10_1109_TNSE_2019_2911713 crossref_primary_10_1016_j_isatra_2021_08_038 crossref_primary_10_1016_j_isatra_2018_08_026 crossref_primary_10_1109_TNSE_2022_3196264 crossref_primary_10_1109_TNNLS_2020_3026646 crossref_primary_10_1109_ACCESS_2018_2807428 crossref_primary_10_1007_s00034_017_0581_y crossref_primary_10_1007_s00034_018_0836_2 crossref_primary_10_1016_j_neucom_2020_05_003 crossref_primary_10_1038_s41598_020_69775_5 crossref_primary_10_1016_j_neucom_2018_08_015 crossref_primary_10_1016_j_neucom_2015_08_036 crossref_primary_10_1007_s11071_019_05258_1 crossref_primary_10_1016_j_ins_2018_01_021 crossref_primary_10_1016_j_isatra_2021_12_035 crossref_primary_10_1016_j_isatra_2022_12_012 crossref_primary_10_1007_s00034_019_01073_6 crossref_primary_10_1109_TNNLS_2018_2839020 crossref_primary_10_1109_TSMC_2024_3389971 crossref_primary_10_1002_asjc_1869 crossref_primary_10_1109_TFUZZ_2021_3111453 crossref_primary_10_1007_s12555_018_0173_z crossref_primary_10_1109_TSMC_2017_2776940 crossref_primary_10_1109_TSMC_2018_2852688 crossref_primary_10_1080_00207721_2017_1421723 crossref_primary_10_1109_TNNLS_2024_3474016 crossref_primary_10_1016_j_isatra_2019_02_012 crossref_primary_10_1007_s12555_018_0357_6 crossref_primary_10_1016_j_isatra_2021_01_036 crossref_primary_10_1109_TSMC_2017_2708507 crossref_primary_10_1016_j_neucom_2019_07_045 crossref_primary_10_1002_rnc_5241 crossref_primary_10_1016_j_neucom_2020_09_074 crossref_primary_10_1109_ACCESS_2017_2711488 crossref_primary_10_1109_TCSI_2020_3016994 crossref_primary_10_1016_j_nahs_2018_08_010 crossref_primary_10_1080_00207721_2021_1998719 crossref_primary_10_1002_rnc_7647 crossref_primary_10_1109_TSMC_2018_2882590 crossref_primary_10_1080_00207721_2018_1478466 crossref_primary_10_1109_TCSI_2023_3288744 crossref_primary_10_1016_j_ins_2019_03_019 crossref_primary_10_1002_rnc_5110 crossref_primary_10_1016_j_isatra_2018_12_051 crossref_primary_10_1016_j_jfranklin_2024_106685 |
| Cites_doi | 10.1016/j.eswa.2015.02.019 10.1103/PhysRevE.86.046103 10.1109/TAC.2014.2325272 10.1109/TNNLS.2015.2490168 10.1016/j.biosystems.2009.10.003 10.1016/j.automatica.2013.01.038 10.1109/TAC.2008.2007860 10.1103/PhysRevE.84.011120 10.1109/TAC.2005.858689 10.1063/1.2944236 10.1109/TNNLS.2015.2511196 10.1109/TNNLS.2013.2271357 10.1109/TNNLS.2015.2443064 10.1109/TNN.2008.2003250 10.1098/rsif.2014.0378 10.1109/TCYB.2014.2386781 10.1109/TIE.2009.2026375 10.1103/RevModPhys.74.47 10.1109/TNNLS.2014.2316245 10.1016/j.ins.2012.07.003 10.1109/TNNLS.2016.2636325 10.1137/1.9781611970777 10.1109/TSMCB.2012.2202647 10.1063/1.4754436 10.1016/j.physleta.2011.06.054 10.1109/TNNLS.2013.2294727 10.1109/TCYB.2014.2313154 10.1109/TSG.2010.2044814 10.1109/TNNLS.2012.2187926 10.1109/TAC.2008.2012009 10.1080/00207721.2012.684903 10.1016/j.isatra.2016.09.026 10.1109/TNN.2010.2090669 10.1002/rnc.3494 10.1016/j.physrep.2008.09.002 10.1109/TNNLS.2015.2412676 10.1109/TNNLS.2014.2387443 10.1016/j.automatica.2006.05.007 10.1109/TCYB.2016.2553043 10.1016/j.jfranklin.2014.11.006 10.1209/epl/i2004-10365-4 10.1109/TCYB.2016.2536750 10.1016/j.automatica.2014.04.012 10.1109/CDC.1999.831330 10.1109/TNNLS.2015.2503772 10.1109/TSMC.2016.2523935 10.1109/TNNLS.2014.2305443 10.1016/j.arcontrol.2014.09.003 10.1109/TIE.2013.2290757 10.1109/TCSI.2009.2023937 10.1142/S0218127402004292 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2017.2678681 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1746 |
| ExternalDocumentID | 28368834 10_1109_TNNLS_2017_2678681 7889020 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61403341; 61573112; 61622302; 61573070 funderid: 10.13039/501100001809 – fundername: Xiang Jiang Scholars Program grantid: XJ2016030 – fundername: National Research Foundation under Energy Innovation Research Programme of Singapore grantid: NRF2013EWT-EIRP001-025 funderid: 10.13039/501100001381 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-7d82e8d5c4aaf228935c088d7d856f8b32ee9568c5a34c886e8db6b8b4cfcb443 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430729100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Mon Sep 29 05:22:53 EDT 2025 Sun Jun 29 15:55:02 EDT 2025 Mon Jul 21 05:47:57 EDT 2025 Sat Nov 29 01:39:56 EST 2025 Tue Nov 18 22:00:29 EST 2025 Wed Aug 27 02:50:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-7d82e8d5c4aaf228935c088d7d856f8b32ee9568c5a34c886e8db6b8b4cfcb443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3672-3716 0000-0001-5140-3588 |
| PMID | 28368834 |
| PQID | 2029143673 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2017_2678681 proquest_miscellaneous_1884164386 pubmed_primary_28368834 proquest_journals_2029143673 ieee_primary_7889020 crossref_primary_10_1109_TNNLS_2017_2678681 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 su (ref7) 2013; 43 ref22 ref21 li (ref6) 2010; 57 ref28 ref27 ref29 |
| References_xml | – ident: ref45 doi: 10.1016/j.eswa.2015.02.019 – ident: ref5 doi: 10.1103/PhysRevE.86.046103 – ident: ref29 doi: 10.1109/TAC.2014.2325272 – ident: ref46 doi: 10.1109/TNNLS.2015.2490168 – ident: ref24 doi: 10.1016/j.biosystems.2009.10.003 – ident: ref31 doi: 10.1016/j.automatica.2013.01.038 – ident: ref42 doi: 10.1109/TAC.2008.2007860 – ident: ref12 doi: 10.1103/PhysRevE.84.011120 – ident: ref37 doi: 10.1109/TAC.2005.858689 – ident: ref10 doi: 10.1063/1.2944236 – ident: ref50 doi: 10.1109/TNNLS.2015.2511196 – ident: ref20 doi: 10.1109/TNNLS.2013.2271357 – ident: ref26 doi: 10.1109/TNNLS.2015.2443064 – ident: ref35 doi: 10.1109/TNN.2008.2003250 – ident: ref23 doi: 10.1098/rsif.2014.0378 – ident: ref34 doi: 10.1109/TCYB.2014.2386781 – ident: ref41 doi: 10.1109/TIE.2009.2026375 – ident: ref1 doi: 10.1103/RevModPhys.74.47 – ident: ref14 doi: 10.1109/TNNLS.2014.2316245 – ident: ref3 doi: 10.1016/j.ins.2012.07.003 – ident: ref51 doi: 10.1109/TNNLS.2016.2636325 – ident: ref47 doi: 10.1137/1.9781611970777 – volume: 43 start-page: 394 year: 2013 ident: ref7 article-title: Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks publication-title: IEEE Trans Syst Cybern doi: 10.1109/TSMCB.2012.2202647 – ident: ref11 doi: 10.1063/1.4754436 – ident: ref25 doi: 10.1016/j.physleta.2011.06.054 – ident: ref16 doi: 10.1109/TNNLS.2013.2294727 – ident: ref2 doi: 10.1109/TCYB.2014.2313154 – ident: ref22 doi: 10.1109/TSG.2010.2044814 – ident: ref21 doi: 10.1109/TNNLS.2012.2187926 – ident: ref38 doi: 10.1109/TAC.2008.2012009 – ident: ref27 doi: 10.1080/00207721.2012.684903 – ident: ref32 doi: 10.1016/j.isatra.2016.09.026 – ident: ref19 doi: 10.1109/TNN.2010.2090669 – ident: ref44 doi: 10.1002/rnc.3494 – ident: ref9 doi: 10.1016/j.physrep.2008.09.002 – ident: ref49 doi: 10.1109/TNNLS.2015.2412676 – ident: ref13 doi: 10.1109/TNNLS.2014.2387443 – ident: ref40 doi: 10.1016/j.automatica.2006.05.007 – ident: ref43 doi: 10.1109/TCYB.2016.2553043 – ident: ref36 doi: 10.1016/j.jfranklin.2014.11.006 – ident: ref8 doi: 10.1209/epl/i2004-10365-4 – ident: ref33 doi: 10.1109/TCYB.2016.2536750 – ident: ref18 doi: 10.1016/j.automatica.2014.04.012 – ident: ref39 doi: 10.1109/CDC.1999.831330 – ident: ref28 doi: 10.1109/TNNLS.2015.2503772 – ident: ref48 doi: 10.1109/TSMC.2016.2523935 – ident: ref15 doi: 10.1109/TNNLS.2014.2305443 – ident: ref17 doi: 10.1016/j.arcontrol.2014.09.003 – ident: ref30 doi: 10.1109/TIE.2013.2290757 – volume: 57 start-page: 213 year: 2010 ident: ref6 article-title: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint publication-title: IEEE Trans Circuits Syst I Reg Papers doi: 10.1109/TCSI.2009.2023937 – ident: ref4 doi: 10.1142/S0218127402004292 |
| SSID | ssj0000605649 |
| Score | 2.5762818 |
| Snippet | This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1732 |
| SubjectTerms | Asynchronous switching Communication Communications systems Complex networks Convexity Error detection event-based communication Optimization random packet dropouts signal quantization State estimation Stochasticity switched complex networks Switches Switching theory Symmetric matrices Synchronization System theory Systems analysis Systems theory Topology |
| Title | Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints |
| URI | https://ieeexplore.ieee.org/document/7889020 https://www.ncbi.nlm.nih.gov/pubmed/28368834 https://www.proquest.com/docview/2029143673 https://www.proquest.com/docview/1884164386 |
| Volume | 29 |
| WOSCitedRecordID | wos000430729100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwED-24YMvTjd11Tki-Kbd2iRNro9DN_YwirCJ37fS_Cj7wujG2k39772kP2Cggm-lTdrQz93lc8ldDuCDNKbwNA-n2udtKhtBdlAULnVGtrpppC1sTBQ-11WFq1X5dQM-Lbkw3vsYfOYPw2Xcy3c39j4slR2Ru1YSvdmETa31mKu1rKdkxMtVZLs8VzzlQq_mHJmsPLqsqvOLEMilDzmZZ4WhQgzNrApRyEdTUqyx8ne6Gaed0-3_G_BzeDbRS3Y8ysML2PDdDmzPpRvYpMm7cHXc_-psOBiXPH8WGSc7IW0fExkZMVn2ZU0WhSh1GrJE2MWPdcDXsfCua_-TVWP8eM--r4cr9ijPhIUqoLH2xNC_hG-nJ5efz9Kp6EJqRZEPqXbIPbrCyqZpObljorBkiRzdL1SLRnDvQ4qhLRohLaKixkYZNNK21kgpXsFWd9P5PWAaM0P-XpsrzaXLWnJdDEejMGut4NYlkM__vbbTieRhcNd19Eyyso6w1QG2eoItgY9Ln9vxPI5_tt4NoCwtJzwS2J_hrSeV7akfL0lolRYJvF8ek7KFHZSm8wRHnWPYpZUCVQKvR7FY3j1L05s_f_MtPKWR4RgruQ9bw929fwdP7MOw7u8OSKJXeBAl-jcCO_FI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qFeyLVeslWnUF3zRtsvc8ll6oeAxCj3jeQvYSeqCkpUm9_HtnNxcoqOBbSHaTJd_M7De7MzsA77gxwuM8nCqfNymvGdpBJlzqDG9UXXMrbEwUXqiy1KtV8WUDPsy5MN77GHzm98Jl3Mt3l_YmLJXto7tWIL25A3cF5zQfsrXmFZUMmbmMfJfmkqaUqdWUJZMV-8uyXJyFUC61R9FASx1qxODcKrVm_NakFKus_J1wxonnZPv_hvwQHowEkxwMEvEINnz7GLan4g1k1OUdOD_ofrU2HI2Lvj-JnJMco74PqYwEuSw5WqNNQVKdhjwRcvZjHRB2JLzrwv8k5RBB3pFv6_6c3Mo0IaEOaKw-0XdP4OvJ8fLwNB3LLqSWibxPldPUaycsr-uGokPGhEVb5PC-kI02jHofkgytqBm3WktsbKTRhtvGGs7ZU9hsL1v_HIjSmUGPr8mlotxlDTovhmojddZYRq1LIJ_-e2XHM8nD4C6q6JtkRRVhqwJs1QhbAu_nPlfDiRz_bL0TQJlbjngksDvBW41K22E_WqDYSsUSeDs_RnULeyh16xGOKtdhn5YzLRN4NojF_O5Jml78-Ztv4P7p8vOiWnwsP72ELRylHiInd2Gzv77xr-Ce_d6vu-vXUa5_AwJ186c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+State+Estimation+for+Discrete-Time+Switched+Complex+Networks+With+Communication+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Dan&rft.au=Qing-Guo%2C+Wang&rft.au=Srinivasan%2C+Dipti&rft.au=Li%2C+Hongyi&rft.date=2018-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=5&rft.spage=1732&rft_id=info:doi/10.1109%2FTNNLS.2017.2678681&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |