Absent Multiple Kernel Learning Algorithms

Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 6; pp. 1303 - 1316
Main Authors: Liu, Xinwang, Wang, Lei, Zhu, Xinzhong, Li, Miaomiao, Zhu, En, Liu, Tongliang, Liu, Li, Dou, Yong, Yin, Jianping
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.
AbstractList Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.
Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.
Author Li, Miaomiao
Liu, Tongliang
Liu, Li
Dou, Yong
Wang, Lei
Zhu, Xinzhong
Zhu, En
Yin, Jianping
Liu, Xinwang
Author_xml – sequence: 1
  givenname: Xinwang
  orcidid: 0000-0001-9066-1475
  surname: Liu
  fullname: Liu, Xinwang
  email: xinwangliu@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-0961-0441
  surname: Wang
  fullname: Wang, Lei
  email: leiw@uow.edu.au
  organization: School of Computing and Information Technology, University of Wollongong, NSW, Australia
– sequence: 3
  givenname: Xinzhong
  orcidid: 0000-0003-2305-7555
  surname: Zhu
  fullname: Zhu, Xinzhong
  email: zxz@zjnu.edu.cn
  organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
– sequence: 4
  givenname: Miaomiao
  orcidid: 0000-0001-7678-687X
  surname: Li
  fullname: Li, Miaomiao
  email: miaomiaolinudt@gmail.com
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: En
  surname: Zhu
  fullname: Zhu, En
  email: enzhu@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Tongliang
  orcidid: 0000-0002-9640-6472
  surname: Liu
  fullname: Liu, Tongliang
  email: tongliang.liu@sydney.edu.au
  organization: UBTECH Sydney Artificial Intelligence Centre and the School of Information Technologies, The University of Sydney, Darlington, NSW, Australia
– sequence: 7
  givenname: Li
  orcidid: 0000-0002-2011-2873
  surname: Liu
  fullname: Liu, Li
  email: li.liu@oulu.fi
  organization: College of System Engineering, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Yong
  surname: Dou
  fullname: Dou, Yong
  email: yongdou@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 9
  givenname: Jianping
  surname: Yin
  fullname: Yin, Jianping
  email: jpyin@dgut.edu.cn
  organization: Dongguan University of Technology, Guangdong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30703009$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi0Eohd4AZBQJRaElOJL4ssYVVwqWsFQZst1nOIqcYqdDLw9Li0dOjCd5fvPf843AKeucQaAKwTHCEHxsHjP59MxhkiMMRcZhfwE9DGiMBFY4FPQh4jihHPMe2AQwhpClGaQnIMegQwSCEUf3OfLYFw7mndVazeVGb0a70w1mhnlnXWrUV6tGm_bzzpcgLNSVcFc7ucQfDw9LiYvyezteTrJZ4kmGWoTpgmlRjMdZ8ZVqjXlmCKVlUtONMwEwWmsZqJUgiBcYkriuaxgRYZRWlAyBHe7vRvffHUmtLK2QZuqUs40XZAYMZFSlgkW0dsjdN103sXr5LYEQUIwitTNnuqWtSnkxtta-W_5ZyECeAdo34TgTXlAEJRb1fJXtdyqlnvVMcSPQtq2qrWNa72y1f_R613UGmMOXZzi-BgiP-CQh8c
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107285
crossref_primary_10_1016_j_patcog_2022_108770
crossref_primary_10_1109_TCYB_2025_3557917
crossref_primary_10_1109_TSMC_2022_3188500
crossref_primary_10_1016_j_neucom_2021_12_020
crossref_primary_10_1109_TSMC_2021_3115555
crossref_primary_10_1109_TCYB_2020_2987164
crossref_primary_10_1109_TETC_2020_3013692
crossref_primary_10_3390_math13071050
crossref_primary_10_26599_BDMA_2024_9020089
crossref_primary_10_1109_TKDE_2021_3054993
crossref_primary_10_1109_TIP_2021_3131941
crossref_primary_10_1109_TMM_2020_3013408
crossref_primary_10_1016_j_inffus_2023_102021
crossref_primary_10_1016_j_inffus_2023_102024
crossref_primary_10_1007_s10489_025_06767_w
crossref_primary_10_1109_TETCI_2021_3110526
crossref_primary_10_3233_JIFS_212316
crossref_primary_10_1109_TCYB_2021_3049633
crossref_primary_10_1016_j_patcog_2022_109119
crossref_primary_10_1109_TNNLS_2020_3027068
crossref_primary_10_1007_s10489_022_04020_2
crossref_primary_10_1109_TNNLS_2019_2919900
crossref_primary_10_1109_TMM_2022_3154592
crossref_primary_10_1109_TPAMI_2023_3262784
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_3390_electronics13234754
crossref_primary_10_1109_TNNLS_2020_3027351
crossref_primary_10_1109_TNNLS_2024_3502455
crossref_primary_10_1109_TIP_2023_3255102
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1145_3408318
crossref_primary_10_1016_j_eswa_2023_121013
crossref_primary_10_1109_TNNLS_2023_3290219
crossref_primary_10_1109_TPAMI_2022_3198638
crossref_primary_10_1109_TIP_2024_3388974
crossref_primary_10_1109_TKDE_2022_3202561
crossref_primary_10_3390_math11061509
crossref_primary_10_1109_TCSVT_2021_3096061
crossref_primary_10_1016_j_patrec_2024_08_022
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1109_TNNLS_2023_3297607
crossref_primary_10_1109_TNNLS_2021_3117403
crossref_primary_10_1109_TIP_2022_3141612
crossref_primary_10_1007_s10489_020_02126_z
crossref_primary_10_1016_j_neucom_2021_06_041
crossref_primary_10_1109_TCYB_2020_3035043
crossref_primary_10_1109_TKDE_2020_3014104
crossref_primary_10_1007_s11042_025_20631_6
Cites_doi 10.1007/3-540-44581-1_27
10.1109/TIT.2010.2044061
10.1137/080738970
10.1017/CBO9780511809682
10.1109/TPAMI.2009.98
10.1109/TPAMI.2010.183
10.1109/TSMCB.2012.2212243
10.1109/CVPR.2006.42
10.1090/S0002-9947-1950-0051437-7
10.1007/s11263-014-0718-4
10.1561/0600000027
10.1109/TPAMI.2014.2313125
10.1145/1015330.1015424
10.1109/ICCV.2009.5459179
10.1016/j.neuroimage.2012.03.059
10.1007/978-3-642-04180-8_39
10.1093/bioinformatics/btn112
10.1145/2339530.2339710
10.1109/TNN.2010.2103571
10.1007/978-3-642-15883-4_5
10.1109/TPAMI.2011.255
10.1145/1273496.1273646
10.1109/TPAMI.2013.149
10.1145/1390156.1390184
10.1109/TPAMI.2013.212
10.1109/TNNLS.2015.2405574
10.1109/TPAMI.2011.114
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2019.2895608
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1316
ExternalDocumentID 30703009
10_1109_TPAMI_2019_2895608
8627941
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China Stem Cell and Translational Research
  grantid: 2018YFB1003203
  funderid: 10.13039/501100013290
– fundername: National Natural Science Foundation of China
  grantid: 61701451; 61672528
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-7c366ec7cc3658a4cc68261a5fb83c05932400979fa9312f2639297d7d5214d63
IEDL.DBID RIE
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535615700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 20:13:46 EDT 2025
Mon Jun 30 02:14:49 EDT 2025
Mon Jul 21 05:57:15 EDT 2025
Sat Nov 29 05:15:58 EST 2025
Tue Nov 18 22:37:42 EST 2025
Wed Aug 27 02:39:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7c366ec7cc3658a4cc68261a5fb83c05932400979fa9312f2639297d7d5214d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0961-0441
0000-0002-9640-6472
0000-0003-2305-7555
0000-0001-7678-687X
0000-0002-2011-2873
0000-0001-9066-1475
PMID 30703009
PQID 2400103321
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_2179467597
ieee_primary_8627941
crossref_citationtrail_10_1109_TPAMI_2019_2895608
crossref_primary_10_1109_TPAMI_2019_2895608
pubmed_primary_30703009
proquest_journals_2400103321
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kloft (ref23) 2011; 12
ref56
ref15
liu (ref34) 2015
ref53
cortes (ref54) 2013
ref52
ref11
ref16
ref18
cortes (ref24) 2009
rakotomamonjy (ref3) 2008; 9
ref51
ref50
kumar (ref25) 2012
cortes (ref55) 2013
ref46
ref45
ref48
ref47
ref42
ref41
ref49
xu (ref19) 2008
ref8
ghahramani (ref40) 1993
ref7
ref9
cortes (ref5) 2012; 13
ref6
yan (ref22) 2012; 13
ye (ref4) 2008; 9
ref35
ref36
gönen (ref14) 2012
ref31
yu (ref17) 2012; 34
gai (ref27) 2010
cortes (ref13) 2010
xu (ref12) 2010
micchelli (ref44) 2005; 6
smola (ref39) 2005
ref26
liu (ref33) 2014
(ref43) 2012
ref21
bucak (ref10) 2014; 36
gönen (ref32) 2008
ref28
marlin (ref38) 2008
orabona (ref20) 2011
sonnenburg (ref2) 2006; 7
lanckriet (ref1) 2004; 5
gönen (ref29) 2014
liu (ref30) 2016
chechik (ref37) 2008; 9
References_xml – start-page: 1175
  year: 2010
  ident: ref12
  article-title: Simple and efficient multiple kernel learning by group lasso
  publication-title: Proc 27th Int Conf Mach Learn
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref2
  article-title: Large scale multiple kernel learning
  publication-title: J Mach Learn Res
– ident: ref42
  doi: 10.1007/3-540-44581-1_27
– ident: ref50
  doi: 10.1109/TIT.2010.2044061
– ident: ref49
  doi: 10.1137/080738970
– ident: ref45
  doi: 10.1017/CBO9780511809682
– volume: 12
  start-page: 953
  year: 2011
  ident: ref23
  article-title: l$_{\mbox{p}}$p-norm multiple kernel learning
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 607
  year: 2012
  ident: ref22
  article-title: Non-sparse multiple kernel fisher discriminant analysis
  publication-title: J Mach Learn Res
– start-page: 2760
  year: 2013
  ident: ref55
  article-title: Learning kernels using local rademacher complexity
  publication-title: Proc 26th Int Conf Neural Inf Process Syst 26
– start-page: 120
  year: 1993
  ident: ref40
  article-title: Supervised learning from incomplete data via an em approach
  publication-title: Proc 6th Int Conf Neural Inf Process Syst 6
– start-page: 1331
  year: 2012
  ident: ref25
  article-title: A binary classification framework for two-stage multiple kernel learning
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref9
  doi: 10.1109/TPAMI.2009.98
– ident: ref8
  doi: 10.1109/TPAMI.2010.183
– volume: 5
  start-page: 27
  year: 2004
  ident: ref1
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1109/TSMCB.2012.2212243
– start-page: 1975
  year: 2014
  ident: ref33
  article-title: Sample-adaptive multiple kernel learning
  publication-title: Proc 28th AAAI Conf Artif Intell
– start-page: 249
  year: 2011
  ident: ref20
  article-title: Ultra-fast optimization algorithm for sparse multi kernel learning
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref56
  doi: 10.1109/CVPR.2006.42
– ident: ref47
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: ref31
  doi: 10.1007/s11263-014-0718-4
– volume: 9
  start-page: 719
  year: 2008
  ident: ref4
  article-title: Multi-class discriminant kernel learning via convex programming
  publication-title: J Mach Learn Res
– start-page: 46
  year: 2013
  ident: ref54
  article-title: Multi-class classification with maximum margin multiple kernel
  publication-title: Proc 30th Int Conf Mach Learn
– start-page: 239
  year: 2010
  ident: ref13
  article-title: Two-stage learning kernel algorithms
  publication-title: Proc 27th Int Conf Mach Learn
– year: 2012
  ident: ref43
  article-title: CVX: Matlab software for disciplined convex programming, version 2.0
– volume: 9
  start-page: 1
  year: 2008
  ident: ref37
  article-title: Max-margin classification of data with absent features
  publication-title: J Mach Learn Res
– start-page: 649
  year: 2010
  ident: ref27
  article-title: Learning kernels with radiuses of minimum enclosing balls
  publication-title: Proc Proc 23rd Int Conf Neural Inf Process Syst
– start-page: 1825
  year: 2008
  ident: ref19
  article-title: An extended level method for efficient multiple kernel learning
  publication-title: Proc 21st Int Conf Neural Inf Process Syst 21
– ident: ref16
  doi: 10.1561/0600000027
– start-page: 91
  year: 2012
  ident: ref14
  article-title: Bayesian efficient multiple kernel learning
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref6
  doi: 10.1109/TPAMI.2014.2313125
– ident: ref48
  doi: 10.1145/1015330.1015424
– start-page: 1888
  year: 2016
  ident: ref30
  article-title: Multiple kernel k-means clustering with matrix-induced regularization
  publication-title: Proc 28th AAAI Conf Artif Intell
– start-page: 2807
  year: 2015
  ident: ref34
  article-title: Absent multiple kernel learning
  publication-title: Proc 29th AAAI Conf Artif Intell
– year: 2008
  ident: ref38
  article-title: Missing data problems in machine learning
– ident: ref15
  doi: 10.1109/ICCV.2009.5459179
– start-page: 1305
  year: 2014
  ident: ref29
  article-title: Localized data fusion for kernel k-means clustering with application to cancer biology
  publication-title: Proc Neural Inf Process Syst
– ident: ref35
  doi: 10.1016/j.neuroimage.2012.03.059
– ident: ref26
  doi: 10.1007/978-3-642-04180-8_39
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref3
  article-title: Simplemkl
  publication-title: J Mach Learn Res
– ident: ref51
  doi: 10.1093/bioinformatics/btn112
– start-page: 352
  year: 2008
  ident: ref32
  article-title: Localized multiple kernel learning
  publication-title: Proc 25th Int Conf Mach Learn
– ident: ref36
  doi: 10.1145/2339530.2339710
– ident: ref53
  doi: 10.1109/TNN.2010.2103571
– volume: 13
  start-page: 795
  year: 2012
  ident: ref5
  article-title: Algorithms for learning kernels based on centered alignment
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1007/978-3-642-15883-4_5
– volume: 34
  start-page: 1031
  year: 2012
  ident: ref17
  article-title: Optimized data fusion for kernel k-means clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.255
– volume: 6
  start-page: 1099
  year: 2005
  ident: ref44
  article-title: Learning the kernel function via regularization
  publication-title: J Mach Learn Res
– ident: ref52
  doi: 10.1145/1273496.1273646
– ident: ref7
  doi: 10.1109/TPAMI.2013.149
– ident: ref41
  doi: 10.1145/1390156.1390184
– volume: 36
  start-page: 1354
  year: 2014
  ident: ref10
  article-title: Multiple kernel learning for visual object recognition : A review
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.212
– start-page: 396
  year: 2009
  ident: ref24
  article-title: Learning non-linear combinations of kernels
  publication-title: Proc 22nd Int Conf Neural Inf Process Syst 22
– start-page: 325
  year: 2005
  ident: ref39
  article-title: Kernel methods for missing variables
  publication-title: Proc 10th Int Workshop Artif Intell Statist
– ident: ref18
  doi: 10.1109/TPAMI.2009.98
– ident: ref21
  doi: 10.1109/TNNLS.2015.2405574
– ident: ref11
  doi: 10.1109/TPAMI.2011.114
SSID ssj0014503
Score 2.5794811
Snippet Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1303
SubjectTerms Absent data learning
Algorithms
Channels
Classification algorithms
Clustering algorithms
Computational geometry
Convexity
Iterative algorithms
Kernel
Kernels
Machine learning
max-margin classification
multiple kernel learning
Optimization
Pattern analysis
Signal processing algorithms
Title Absent Multiple Kernel Learning Algorithms
URI https://ieeexplore.ieee.org/document/8627941
https://www.ncbi.nlm.nih.gov/pubmed/30703009
https://www.proquest.com/docview/2400103321
https://www.proquest.com/docview/2179467597
Volume 42
WOSCitedRecordID wos000535615700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYAD481goCJxAgrtsiXNcUIgEA9xALRbFVIXkEaH9uD3Y6dpxQGQOLVS0lf8ubbjF8BBlgiMdBKFFrXmrRsVGkyyUBNAjFIKpaul93Sj7u6Sfl_fz8BxnQuDiC74DE_41Pnys6Gd8lbZKWnfBB-ydWaVkmWuVu0x6HRdF2TSYIjDyYyoEmQiffpw37u94igufULmBYl4btJXYp3jEL_JI9dg5Xdd08mci8b_3nYZlrxuGfRKMKzADBar0Kj6NgSejVdh8VsRwjU47D1zAlJw60MLg2scFTgIfOXVl6A3eBmO3iav7-N1eLw4fzi7DH0HhdCKbjwJlRVSolWWjt3EdKyVZE7Epps_J8JyNz8OIdVK50aLuJ23JatLKlMZSfVOJsUGzBXDArcgQIW5NCityUQnt4breCXsQs5NlBmFTYirdUytLy_OXS4GqTMzIp06MqRMhtSToQlH9TUfZXGNP2ev8SLXM_36NqFVkSv1_DdO-bPiSIg2De_Xw8Q57A4xBQ6nNIf_RWQvadWEzZLM9b0rdGz__MwdWGiz3e12Y1owNxlNcRfm7efkbTzaI3j2kz0Hzy_ec9tE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQIAEHxpvxLBInoNA2bdMcJwQCsU0cBuJWhdQdk0aH9uD3E6dpxQGQOLVS0lds1_7iF8BpljD0ROK5CoWgrRvuSkwyV2gGkZxzjE0tvec273aTlxfxOAcXdS4MIprgM7ykU-PLz0ZqRltlV9r61uyjsc5CFIaBV2Zr1T6DMDJ9kLUNo2VcA4kqRcYTV73HVuee4rjEpQYYWslTm76S2ykS8ZtGMi1Wfrc2jda5bfzvfddg1VqXTqtkh3WYw2IDGlXnBscK8gasfCtDuAlnrVdKQXI6NrjQecBxgUPH1l7tO61hfzQeTN_eJ1vwdHvTu75zbQ8FV7HIn7pcsThGxZU-RokMlYo1oPBllL8mTFE_PwoiFVzkUjA_yIOYDCae8Uzr9TCL2TbMF6MCd8FBjnksMVYyY2GuJFXySsiJnEsvkxyb4FfrmCpbYJz6XAxTAzQ8kRoypESG1JKhCef1NR9leY0_Z2_SItcz7fo24aAiV2olcJLSZ_keY4EePqmHteyQQ0QWOJrpOfQ30ohJ8CbslGSu711xx97PzzyGpbtep52277sP-7AcEAo3ezMHMD8dz_AQFtXndDAZHxkm_QJGdN2j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absent+Multiple+Kernel+Learning+Algorithms&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Xinwang&rft.au=Wang%2C+Lei&rft.au=Zhu%2C+Xinzhong&rft.au=Li%2C+Miaomiao&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=42&rft.issue=6&rft.spage=1303&rft.epage=1316&rft_id=info:doi/10.1109%2FTPAMI.2019.2895608&rft_id=info%3Apmid%2F30703009&rft.externalDocID=8627941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon