Absent Multiple Kernel Learning Algorithms
Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missin...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 42; číslo 6; s. 1303 - 1316 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio. |
|---|---|
| AbstractList | Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio. Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are first imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio. |
| Author | Li, Miaomiao Liu, Tongliang Liu, Li Dou, Yong Wang, Lei Zhu, Xinzhong Zhu, En Yin, Jianping Liu, Xinwang |
| Author_xml | – sequence: 1 givenname: Xinwang orcidid: 0000-0001-9066-1475 surname: Liu fullname: Liu, Xinwang email: xinwangliu@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Lei orcidid: 0000-0002-0961-0441 surname: Wang fullname: Wang, Lei email: leiw@uow.edu.au organization: School of Computing and Information Technology, University of Wollongong, NSW, Australia – sequence: 3 givenname: Xinzhong orcidid: 0000-0003-2305-7555 surname: Zhu fullname: Zhu, Xinzhong email: zxz@zjnu.edu.cn organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China – sequence: 4 givenname: Miaomiao orcidid: 0000-0001-7678-687X surname: Li fullname: Li, Miaomiao email: miaomiaolinudt@gmail.com organization: College of Computer, National University of Defense Technology, Changsha, China – sequence: 5 givenname: En surname: Zhu fullname: Zhu, En email: enzhu@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, China – sequence: 6 givenname: Tongliang orcidid: 0000-0002-9640-6472 surname: Liu fullname: Liu, Tongliang email: tongliang.liu@sydney.edu.au organization: UBTECH Sydney Artificial Intelligence Centre and the School of Information Technologies, The University of Sydney, Darlington, NSW, Australia – sequence: 7 givenname: Li orcidid: 0000-0002-2011-2873 surname: Liu fullname: Liu, Li email: li.liu@oulu.fi organization: College of System Engineering, National University of Defense Technology, Changsha, China – sequence: 8 givenname: Yong surname: Dou fullname: Dou, Yong email: yongdou@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, China – sequence: 9 givenname: Jianping surname: Yin fullname: Yin, Jianping email: jpyin@dgut.edu.cn organization: Dongguan University of Technology, Guangdong, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30703009$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kLtOwzAUhi0Eohd4AZBQJRaElOJL4ssYVVwqWsFQZst1nOIqcYqdDLw9Li0dOjCd5fvPf843AKeucQaAKwTHCEHxsHjP59MxhkiMMRcZhfwE9DGiMBFY4FPQh4jihHPMe2AQwhpClGaQnIMegQwSCEUf3OfLYFw7mndVazeVGb0a70w1mhnlnXWrUV6tGm_bzzpcgLNSVcFc7ucQfDw9LiYvyezteTrJZ4kmGWoTpgmlRjMdZ8ZVqjXlmCKVlUtONMwEwWmsZqJUgiBcYkriuaxgRYZRWlAyBHe7vRvffHUmtLK2QZuqUs40XZAYMZFSlgkW0dsjdN103sXr5LYEQUIwitTNnuqWtSnkxtta-W_5ZyECeAdo34TgTXlAEJRb1fJXtdyqlnvVMcSPQtq2qrWNa72y1f_R613UGmMOXZzi-BgiP-CQh8c |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107285 crossref_primary_10_1016_j_patcog_2022_108770 crossref_primary_10_1109_TCYB_2025_3557917 crossref_primary_10_1109_TSMC_2022_3188500 crossref_primary_10_1016_j_neucom_2021_12_020 crossref_primary_10_1109_TSMC_2021_3115555 crossref_primary_10_1109_TCYB_2020_2987164 crossref_primary_10_1109_TETC_2020_3013692 crossref_primary_10_3390_math13071050 crossref_primary_10_26599_BDMA_2024_9020089 crossref_primary_10_1109_TKDE_2021_3054993 crossref_primary_10_1109_TIP_2021_3131941 crossref_primary_10_1109_TMM_2020_3013408 crossref_primary_10_1016_j_inffus_2023_102021 crossref_primary_10_1016_j_inffus_2023_102024 crossref_primary_10_1007_s10489_025_06767_w crossref_primary_10_1109_TETCI_2021_3110526 crossref_primary_10_3233_JIFS_212316 crossref_primary_10_1109_TCYB_2021_3049633 crossref_primary_10_1016_j_patcog_2022_109119 crossref_primary_10_1109_TNNLS_2020_3027068 crossref_primary_10_1007_s10489_022_04020_2 crossref_primary_10_1109_TNNLS_2019_2919900 crossref_primary_10_1109_TMM_2022_3154592 crossref_primary_10_1109_TPAMI_2023_3262784 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_3390_electronics13234754 crossref_primary_10_1109_TNNLS_2020_3027351 crossref_primary_10_1109_TNNLS_2024_3502455 crossref_primary_10_1109_TIP_2023_3255102 crossref_primary_10_1007_s10489_024_05616_6 crossref_primary_10_1145_3408318 crossref_primary_10_1016_j_eswa_2023_121013 crossref_primary_10_1109_TNNLS_2023_3290219 crossref_primary_10_1109_TPAMI_2022_3198638 crossref_primary_10_1109_TIP_2024_3388974 crossref_primary_10_1109_TKDE_2022_3202561 crossref_primary_10_3390_math11061509 crossref_primary_10_1109_TCSVT_2021_3096061 crossref_primary_10_1016_j_patrec_2024_08_022 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1109_TNNLS_2023_3297607 crossref_primary_10_1109_TNNLS_2021_3117403 crossref_primary_10_1109_TIP_2022_3141612 crossref_primary_10_1007_s10489_020_02126_z crossref_primary_10_1016_j_neucom_2021_06_041 crossref_primary_10_1109_TCYB_2020_3035043 crossref_primary_10_1109_TKDE_2020_3014104 crossref_primary_10_1007_s11042_025_20631_6 |
| Cites_doi | 10.1007/3-540-44581-1_27 10.1109/TIT.2010.2044061 10.1137/080738970 10.1017/CBO9780511809682 10.1109/TPAMI.2009.98 10.1109/TPAMI.2010.183 10.1109/TSMCB.2012.2212243 10.1109/CVPR.2006.42 10.1090/S0002-9947-1950-0051437-7 10.1007/s11263-014-0718-4 10.1561/0600000027 10.1109/TPAMI.2014.2313125 10.1145/1015330.1015424 10.1109/ICCV.2009.5459179 10.1016/j.neuroimage.2012.03.059 10.1007/978-3-642-04180-8_39 10.1093/bioinformatics/btn112 10.1145/2339530.2339710 10.1109/TNN.2010.2103571 10.1007/978-3-642-15883-4_5 10.1109/TPAMI.2011.255 10.1145/1273496.1273646 10.1109/TPAMI.2013.149 10.1145/1390156.1390184 10.1109/TPAMI.2013.212 10.1109/TNNLS.2015.2405574 10.1109/TPAMI.2011.114 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2019.2895608 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1316 |
| ExternalDocumentID | 30703009 10_1109_TPAMI_2019_2895608 8627941 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China Stem Cell and Translational Research grantid: 2018YFB1003203 funderid: 10.13039/501100013290 – fundername: National Natural Science Foundation of China grantid: 61701451; 61672528 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-7c366ec7cc3658a4cc68261a5fb83c05932400979fa9312f2639297d7d5214d63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535615700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 20:13:46 EDT 2025 Mon Jun 30 02:14:49 EDT 2025 Mon Jul 21 05:57:15 EDT 2025 Sat Nov 29 05:15:58 EST 2025 Tue Nov 18 22:37:42 EST 2025 Wed Aug 27 02:39:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-7c366ec7cc3658a4cc68261a5fb83c05932400979fa9312f2639297d7d5214d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0961-0441 0000-0002-9640-6472 0000-0003-2305-7555 0000-0001-7678-687X 0000-0002-2011-2873 0000-0001-9066-1475 |
| PMID | 30703009 |
| PQID | 2400103321 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2179467597 ieee_primary_8627941 crossref_citationtrail_10_1109_TPAMI_2019_2895608 crossref_primary_10_1109_TPAMI_2019_2895608 pubmed_primary_30703009 proquest_journals_2400103321 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | kloft (ref23) 2011; 12 ref56 ref15 liu (ref34) 2015 ref53 cortes (ref54) 2013 ref52 ref11 ref16 ref18 cortes (ref24) 2009 rakotomamonjy (ref3) 2008; 9 ref51 ref50 kumar (ref25) 2012 cortes (ref55) 2013 ref46 ref45 ref48 ref47 ref42 ref41 ref49 xu (ref19) 2008 ref8 ghahramani (ref40) 1993 ref7 ref9 cortes (ref5) 2012; 13 ref6 yan (ref22) 2012; 13 ye (ref4) 2008; 9 ref35 ref36 gönen (ref14) 2012 ref31 yu (ref17) 2012; 34 gai (ref27) 2010 cortes (ref13) 2010 xu (ref12) 2010 micchelli (ref44) 2005; 6 smola (ref39) 2005 ref26 liu (ref33) 2014 (ref43) 2012 ref21 bucak (ref10) 2014; 36 gönen (ref32) 2008 ref28 marlin (ref38) 2008 orabona (ref20) 2011 sonnenburg (ref2) 2006; 7 lanckriet (ref1) 2004; 5 gönen (ref29) 2014 liu (ref30) 2016 chechik (ref37) 2008; 9 |
| References_xml | – start-page: 1175 year: 2010 ident: ref12 article-title: Simple and efficient multiple kernel learning by group lasso publication-title: Proc 27th Int Conf Mach Learn – volume: 7 start-page: 1531 year: 2006 ident: ref2 article-title: Large scale multiple kernel learning publication-title: J Mach Learn Res – ident: ref42 doi: 10.1007/3-540-44581-1_27 – ident: ref50 doi: 10.1109/TIT.2010.2044061 – ident: ref49 doi: 10.1137/080738970 – ident: ref45 doi: 10.1017/CBO9780511809682 – volume: 12 start-page: 953 year: 2011 ident: ref23 article-title: l$_{\mbox{p}}$p-norm multiple kernel learning publication-title: J Mach Learn Res – volume: 13 start-page: 607 year: 2012 ident: ref22 article-title: Non-sparse multiple kernel fisher discriminant analysis publication-title: J Mach Learn Res – start-page: 2760 year: 2013 ident: ref55 article-title: Learning kernels using local rademacher complexity publication-title: Proc 26th Int Conf Neural Inf Process Syst 26 – start-page: 120 year: 1993 ident: ref40 article-title: Supervised learning from incomplete data via an em approach publication-title: Proc 6th Int Conf Neural Inf Process Syst 6 – start-page: 1331 year: 2012 ident: ref25 article-title: A binary classification framework for two-stage multiple kernel learning publication-title: Proc 29th Int Conf Mach Learn – ident: ref9 doi: 10.1109/TPAMI.2009.98 – ident: ref8 doi: 10.1109/TPAMI.2010.183 – volume: 5 start-page: 27 year: 2004 ident: ref1 article-title: Learning the kernel matrix with semidefinite programming publication-title: J Mach Learn Res – ident: ref28 doi: 10.1109/TSMCB.2012.2212243 – start-page: 1975 year: 2014 ident: ref33 article-title: Sample-adaptive multiple kernel learning publication-title: Proc 28th AAAI Conf Artif Intell – start-page: 249 year: 2011 ident: ref20 article-title: Ultra-fast optimization algorithm for sparse multi kernel learning publication-title: Proc 28th Int Conf Mach Learn – ident: ref56 doi: 10.1109/CVPR.2006.42 – ident: ref47 doi: 10.1090/S0002-9947-1950-0051437-7 – ident: ref31 doi: 10.1007/s11263-014-0718-4 – volume: 9 start-page: 719 year: 2008 ident: ref4 article-title: Multi-class discriminant kernel learning via convex programming publication-title: J Mach Learn Res – start-page: 46 year: 2013 ident: ref54 article-title: Multi-class classification with maximum margin multiple kernel publication-title: Proc 30th Int Conf Mach Learn – start-page: 239 year: 2010 ident: ref13 article-title: Two-stage learning kernel algorithms publication-title: Proc 27th Int Conf Mach Learn – year: 2012 ident: ref43 article-title: CVX: Matlab software for disciplined convex programming, version 2.0 – volume: 9 start-page: 1 year: 2008 ident: ref37 article-title: Max-margin classification of data with absent features publication-title: J Mach Learn Res – start-page: 649 year: 2010 ident: ref27 article-title: Learning kernels with radiuses of minimum enclosing balls publication-title: Proc Proc 23rd Int Conf Neural Inf Process Syst – start-page: 1825 year: 2008 ident: ref19 article-title: An extended level method for efficient multiple kernel learning publication-title: Proc 21st Int Conf Neural Inf Process Syst 21 – ident: ref16 doi: 10.1561/0600000027 – start-page: 91 year: 2012 ident: ref14 article-title: Bayesian efficient multiple kernel learning publication-title: Proc 29th Int Conf Mach Learn – ident: ref6 doi: 10.1109/TPAMI.2014.2313125 – ident: ref48 doi: 10.1145/1015330.1015424 – start-page: 1888 year: 2016 ident: ref30 article-title: Multiple kernel k-means clustering with matrix-induced regularization publication-title: Proc 28th AAAI Conf Artif Intell – start-page: 2807 year: 2015 ident: ref34 article-title: Absent multiple kernel learning publication-title: Proc 29th AAAI Conf Artif Intell – year: 2008 ident: ref38 article-title: Missing data problems in machine learning – ident: ref15 doi: 10.1109/ICCV.2009.5459179 – start-page: 1305 year: 2014 ident: ref29 article-title: Localized data fusion for kernel k-means clustering with application to cancer biology publication-title: Proc Neural Inf Process Syst – ident: ref35 doi: 10.1016/j.neuroimage.2012.03.059 – ident: ref26 doi: 10.1007/978-3-642-04180-8_39 – volume: 9 start-page: 2491 year: 2008 ident: ref3 article-title: Simplemkl publication-title: J Mach Learn Res – ident: ref51 doi: 10.1093/bioinformatics/btn112 – start-page: 352 year: 2008 ident: ref32 article-title: Localized multiple kernel learning publication-title: Proc 25th Int Conf Mach Learn – ident: ref36 doi: 10.1145/2339530.2339710 – ident: ref53 doi: 10.1109/TNN.2010.2103571 – volume: 13 start-page: 795 year: 2012 ident: ref5 article-title: Algorithms for learning kernels based on centered alignment publication-title: J Mach Learn Res – ident: ref46 doi: 10.1007/978-3-642-15883-4_5 – volume: 34 start-page: 1031 year: 2012 ident: ref17 article-title: Optimized data fusion for kernel k-means clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.255 – volume: 6 start-page: 1099 year: 2005 ident: ref44 article-title: Learning the kernel function via regularization publication-title: J Mach Learn Res – ident: ref52 doi: 10.1145/1273496.1273646 – ident: ref7 doi: 10.1109/TPAMI.2013.149 – ident: ref41 doi: 10.1145/1390156.1390184 – volume: 36 start-page: 1354 year: 2014 ident: ref10 article-title: Multiple kernel learning for visual object recognition : A review publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.212 – start-page: 396 year: 2009 ident: ref24 article-title: Learning non-linear combinations of kernels publication-title: Proc 22nd Int Conf Neural Inf Process Syst 22 – start-page: 325 year: 2005 ident: ref39 article-title: Kernel methods for missing variables publication-title: Proc 10th Int Workshop Artif Intell Statist – ident: ref18 doi: 10.1109/TPAMI.2009.98 – ident: ref21 doi: 10.1109/TNNLS.2015.2405574 – ident: ref11 doi: 10.1109/TPAMI.2011.114 |
| SSID | ssj0014503 |
| Score | 2.5795414 |
| Snippet | Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1303 |
| SubjectTerms | Absent data learning Algorithms Channels Classification algorithms Clustering algorithms Computational geometry Convexity Iterative algorithms Kernel Kernels Machine learning max-margin classification multiple kernel learning Optimization Pattern analysis Signal processing algorithms |
| Title | Absent Multiple Kernel Learning Algorithms |
| URI | https://ieeexplore.ieee.org/document/8627941 https://www.ncbi.nlm.nih.gov/pubmed/30703009 https://www.proquest.com/docview/2400103321 https://www.proquest.com/docview/2179467597 |
| Volume | 42 |
| WOSCitedRecordID | wos000535615700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB92N9UcGTWt0mbdMcF1EUH3hQ2VvZptNVWLuyD3-_M2laPKjgqYWkr8xM55vMC-AIZVugNtoXiJkfKmH8JNORnxgpioIQbWaLPb_cqYeHpNvVjzNw2uTCIKINPsMzPrW-_HxoprxVdk7om9iHbJ1ZpeIqV6vxGISR7YJMCIYknMyIOkGmrc-fHjv3NxzFpc_IvCAVz036Kl7nOMRv-sg2WPkda1qdc7X8v7ddgSWHLb1OxQyrMIPlGizXfRs8J8ZrsPitCOE6HHcyTkDy7l1ooXeLoxIHnqu82vc6g_5w9DZ5fR9vwPPV5dPFte86KPhGRsHEV0bGMRpl6BglvdCYmMyJoBcVWSINd_PjEFKtdNHTMhCFiBkuqVzlpNXDPJabMFcOS9wGDyMswgiDItJhiIwrhUlEIaU2JLl50oKgXsfUuPLi3OVikFozo61TS4aUyZA6MrTgpLnmoyqu8efsdV7kZqZb3xbs1eRKnfyNU_6soC2loOHDZpgkh90hvRKHU5rD_yKyl7RqwVZF5ubeNXfs_PzMXVgQbHfb3Zg9mJuMprgP8-Zz8jYeHRB7dpMDy55fNrja1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hWolyKC0UmpaHK3Fqa7D3YXuPEQKBSCIOAXGz4vWYIqVOlUd_f2fWa4sDIPVkS7t-7cx4vtl5ARyjjAQaa0KBWIQqFTbMCqPDzEpRVYRoC1fs-W6QjkbZ_b25WYOfXS4MIrrgMzzhU-fLL2d2xVtlp4S-iX3I1nmjlRJRk63V-QyUdn2QCcOQjJMh0abIROZ0fNMfXnEclzkhA4OUPLfpa7idIxGfaCTXYuVltOm0zsXW_73vB3jv0WXQb9jhI6xhvQ1bbeeGwAvyNmw-KUO4A9_7BacgBUMfXBhc47zGaeBrrz4E_enDbP64_PV78QluL87HZ5eh76EQWqnjZZhamSRoU0tHnU2UtQkZFPFEV0UmLffz4yBSk5pqYmQsKpEwYErLtCS9rspE7sJ6PavxMwSosVIa40obpZCRpbCZqKQ0lmS3zHoQt-uYW19gnPtcTHNnaEQmd2TImQy5J0MPfnTX_GnKa7w6e4cXuZvp17cH-y25ci-Bi5w_K46kFDT8rRsm2WGHyKTG2Yrm8N-ILCaT9mCvIXN375Y7vjz_zCPYuBwPB_nganT9Fd4JtsLd3sw-rC_nKzyAt_bv8nExP3RM-g-dCN02 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absent+Multiple+Kernel+Learning+Algorithms&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Xinwang&rft.au=Wang%2C+Lei&rft.au=Zhu%2C+Xinzhong&rft.au=Li%2C+Miaomiao&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=42&rft.issue=6&rft.spage=1303&rft_id=info:doi/10.1109%2FTPAMI.2019.2895608&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |