Adversarial Attack Type I: Cheat Classifiers by Significant Changes

Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 3; S. 1100 - 1109
Hauptverfasser: Tang, Sanli, Huang, Xiaolin, Chen, Mingjian, Sun, Chengjin, Yang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!