Adversarial Attack Type I: Cheat Classifiers by Significant Changes

Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 3; S. 1100 - 1109
Hauptverfasser: Tang, Sanli, Huang, Xiaolin, Chen, Mingjian, Sun, Chengjin, Yang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well. Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different.
AbstractList Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well. Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different.Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well. Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different.
Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well. Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different.
Author Tang, Sanli
Huang, Xiaolin
Yang, Jie
Chen, Mingjian
Sun, Chengjin
Author_xml – sequence: 1
  givenname: Sanli
  surname: Tang
  fullname: Tang, Sanli
  email: tangsanli@sjtu.edu.cn
  organization: MOE Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China
– sequence: 2
  givenname: Xiaolin
  orcidid: 0000-0003-4285-6520
  surname: Huang
  fullname: Huang, Xiaolin
  email: xiaolinhuang@sjtu.edu.cn
  organization: MOE Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China
– sequence: 3
  givenname: Mingjian
  orcidid: 0000-0003-0584-6286
  surname: Chen
  fullname: Chen, Mingjian
  email: w179261466@sjtu.edu.cn
  organization: MOE Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China
– sequence: 4
  givenname: Chengjin
  orcidid: 0000-0002-9992-7919
  surname: Sun
  fullname: Sun, Chengjin
  email: sunchengjin@sjtu.edu.cn
  organization: MOE Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0003-4801-7162
  surname: Yang
  fullname: Yang, Jie
  email: jieyang@sjtu.edu.cn
  organization: MOE Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31442970$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LwzAUhoMoOqd_QEEK3njTmZw0TeLdKH4MFAXndTjNUo127Uw6Yf_e6qYXXgiBEPI8L4fz7pPtpm0cIUeMjhij-nz6ML6bjIAyPQLNcy7VFhkAy2mqQcM2GVCWQ6oUqD2yH-MrpSwTlO-SPc6yDLSkA1KMZx8uRAwe62TcdWjfkulq4ZLJRVK8OOySosYYfeV7KilXyaN_bvqXxab_esHm2cUDslNhHd3h5h6Sp6vLaXGT3t5fT4rxbWq5YF0q0Zal1gJsplCUbJZbKzOArBIWS9BWuBw5KuCOQ45aKp1XloGtpKIaSz4kZ-vcRWjfly52Zu6jdXWNjWuX0QAoKgQInffo6R_0tV2Gpp_OQKZkxiXvz5CcbKhlOXczswh-jmFlftbTA2oN2NDGGFxlrO-w823TBfS1YdR8NWG-mzBfTZhNE70Kf9Sf9H-l47XknXO_glJUcib4Jz_kkeg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patcog_2021_108491
crossref_primary_10_1016_j_patcog_2021_108192
crossref_primary_10_1007_s11263_025_02467_7
crossref_primary_10_1109_TAI_2023_3257276
crossref_primary_10_1109_TPAMI_2025_3540200
crossref_primary_10_1109_TDSC_2022_3186918
crossref_primary_10_1109_TMI_2021_3072568
crossref_primary_10_1109_TETCI_2024_3367812
crossref_primary_10_1109_TPAMI_2020_3033291
crossref_primary_10_1016_j_engappai_2023_106595
crossref_primary_10_3390_technologies13050202
crossref_primary_10_1145_3643563
crossref_primary_10_1109_TIP_2025_3572793
crossref_primary_10_32604_cmc_2022_029969
crossref_primary_10_1109_TPAMI_2024_3365699
crossref_primary_10_1109_JIOT_2020_3040281
Cites_doi 10.1109/TNNLS.2018.2886017
10.1109/5.726791
10.4204/EPTCS.257.3
10.1109/CVPR.2017.645
10.24963/ijcai.2018/543
10.1109/SP.2016.41
10.1109/SP.2017.49
10.1201/9781351251389-8
10.1109/CVPR.2016.282
10.1109/CVPR.2019.00453
10.1109/ICCV.2015.425
10.14722/ndss.2018.23198
10.1109/CVPR.2017.660
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298682
10.1109/CVPR.2015.7298640
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2019.2936378
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1109
ExternalDocumentID 31442970
10_1109_TPAMI_2019_2936378
8807315
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Committee of Science and Technology, Shanghai, China
  grantid: 19510711200
– fundername: National Natural Science Foundation of China
  grantid: 61977046; 61603248; 61876107; U1803261
  funderid: 10.13039/501100001809
– fundername: 1000-Talent Plan
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-7acbb9952c48a5b1d6cc74224f5cab29c5e6a3a823e326a97896fc12cf7809ab3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616309900025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:49:43 EDT 2025
Sun Nov 09 06:24:13 EST 2025
Wed Feb 19 02:29:47 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 05:47:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7acbb9952c48a5b1d6cc74224f5cab29c5e6a3a823e326a97896fc12cf7809ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4285-6520
0000-0003-0584-6286
0000-0003-4801-7162
0000-0002-9992-7919
PMID 31442970
PQID 2487437337
PQPubID 85458
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2019_2936378
pubmed_primary_31442970
crossref_primary_10_1109_TPAMI_2019_2936378
proquest_journals_2487437337
proquest_miscellaneous_2280552596
ieee_primary_8807315
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
szegedy (ref9) 2014
ref12
goodfellow (ref6) 2015
ref36
kingma (ref34) 2015
ref31
ref11
ref32
chen (ref13) 2018
ref1
ref39
krizhevsky (ref2) 2012
baluja (ref19) 2018
huang (ref38) 2007
wang (ref10) 2017
ref18
huang (ref22) 2018
madry (ref14) 2018
lample (ref30) 2017
dai (ref29) 2017
ref23
ref26
ref25
ref41
ref21
song (ref15) 2018
kannan (ref40) 2018
kingma (ref5) 2014
makhzani (ref16) 2015
kingma (ref28) 2014
berthelot (ref33) 2017
ref8
ref7
lee (ref20) 2017
ref3
goodfellow (ref4) 2014
tramer (ref42) 2018
mirza (ref27) 2014
odena (ref17) 2017
gilmer (ref24) 2018
abadi (ref37) 2016
References_xml – ident: ref8
  doi: 10.1109/TNNLS.2018.2886017
– ident: ref41
  doi: 10.1109/5.726791
– year: 2018
  ident: ref40
  article-title: Adversarial logit pairing
– ident: ref7
  doi: 10.4204/EPTCS.257.3
– year: 2015
  ident: ref16
  article-title: Adversarial autoencoders
– ident: ref31
  doi: 10.1109/CVPR.2017.645
– start-page: 5967
  year: 2017
  ident: ref30
  article-title: Fader networks: Manipulating images by sliding attributes
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref21
  doi: 10.24963/ijcai.2018/543
– ident: ref11
  doi: 10.1109/SP.2016.41
– ident: ref12
  doi: 10.1109/SP.2017.49
– start-page: 2642
  year: 2017
  ident: ref17
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: Proc Int Conf Mach Learn
– start-page: 2672
  year: 2014
  ident: ref4
  article-title: Generative adversarial nets
  publication-title: Proc Int Conf Neural Inf Process
– year: 2017
  ident: ref20
  article-title: Generative adversarial trainer: Defense to adversarial perturbations with GAN
– start-page: 2687
  year: 2018
  ident: ref19
  article-title: Learning to Attack: Adversarial Transformation Networks
  publication-title: Proc 32rd AAAI Conf Artif Intell
– ident: ref26
  doi: 10.1201/9781351251389-8
– start-page: 10
  year: 2018
  ident: ref13
  article-title: EAD: Elastic-net attacks to deep neural networks via adversarial examples
  publication-title: Proc 32nd AAAI Conf Artif Intell
– year: 2015
  ident: ref34
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref10
  article-title: A theoretical framework for robustness of (deep) classifiers against adversarial examples
  publication-title: Proc Int Conf Learn Representations Workshop
– year: 2014
  ident: ref5
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Representations
– start-page: 52
  year: 2018
  ident: ref22
  article-title: IntroVAE: Introspective variational autoencoders for photographic image synthesis
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref25
  doi: 10.1109/CVPR.2016.282
– ident: ref18
  doi: 10.1109/CVPR.2019.00453
– year: 2018
  ident: ref42
  article-title: Ensemble adversarial training: Attacks and defenses
  publication-title: Proc Int Conf Learn Representations
– ident: ref36
  doi: 10.1109/ICCV.2015.425
– ident: ref39
  doi: 10.14722/ndss.2018.23198
– year: 2018
  ident: ref14
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: Proc Int Conf Learn Representations
– year: 2007
  ident: ref38
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
– ident: ref3
  doi: 10.1109/CVPR.2017.660
– ident: ref1
  doi: 10.1109/CVPR.2016.90
– year: 2016
  ident: ref37
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– ident: ref35
  doi: 10.1109/5.726791
– year: 2017
  ident: ref33
  article-title: BEGAN: Boundary equilibrium generative adversarial networks
  publication-title: arXiv 1703 10717
– year: 2015
  ident: ref6
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Representations
– start-page: 3581
  year: 2014
  ident: ref28
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 8312
  year: 2018
  ident: ref15
  article-title: Constructing unrestricted adversarial examples with generative models
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 6513
  year: 2017
  ident: ref29
  article-title: Good semi-supervised learning that requires a bad GAN
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref32
  doi: 10.1109/CVPR.2015.7298682
– year: 2014
  ident: ref9
  article-title: Intriguing properties of neural networks
  publication-title: Proc Int Conf Learn Representations
– start-page: 1097
  year: 2012
  ident: ref2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– year: 2018
  ident: ref24
  article-title: Adversarial spheres
– ident: ref23
  doi: 10.1109/CVPR.2015.7298640
– year: 2014
  ident: ref27
  article-title: Conditional generative adversarial nets
  publication-title: arXiv preprint arXiv 1411 1784
SSID ssj0014503
Score 2.4915476
Snippet Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1100
SubjectTerms Adversarial attack
Aerospace electronics
Artificial neural networks
Classifiers
Face recognition
Neural networks
Permutations
Sun
supervised variational autoencoder
Task analysis
Toy manufacturing industry
Training
type I error
Title Adversarial Attack Type I: Cheat Classifiers by Significant Changes
URI https://ieeexplore.ieee.org/document/8807315
https://www.ncbi.nlm.nih.gov/pubmed/31442970
https://www.proquest.com/docview/2487437337
https://www.proquest.com/docview/2280552596
Volume 43
WOSCitedRecordID wos000616309900025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB62Sw_pIZvm0TqPRYXeGie2_JDV27JkyR4aAk1hb0aS5bCkeMuuN5B_nxn5QQ5pIDeDJVvMw5rPmpkP4HuB3sfjtPStTRCgKAQoOrSFH-u0KK3EOSpwZBPi5iZbLOTtAM77WhhrrUs-sxd06c7yi5XZ0q-yS7Q1EVFF-QchRFOr1Z8YxIljQcYIBj0cYURXIBPIy7vbya85ZXHJC9zc0kgQSV-ESIJL4ih-sR85gpX_x5puz5mN3rfaPdhtY0s2aYzhMwxstQ-jjreBtW68D59eNCE8gKnjZN4oskQ2qWtlHhihUzb_yab0qWaOOHNZEmk200_s9_K-ogQj1AlrihM2h_BndnU3vfZbagXfRElY-0IZraVMuIkzleiwSI1BkMzjMjFKc2kSm6pIZTyyGN8phJoyLU3ITSmyQCodHcGwWlX2K7CyUFrGqNY0o-aBmQ5xLqIwlVEoGIQehJ2Ac9P2HSf6i7-5wx-BzJ1-ctJP3urHgx_9nH9N1403Rx-Q9PuRreA9OO30mLeOuck5AjTq5hQJD771t9Gl6JxEVXa1xTEcl54gLkw9-NLov392ZzbHr7_zBHY4Jb24JLVTGNbrrT2Dj-axXm7WY7TbRTZ2dvsMx57lJQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_ECtqH-m3j5wp9a6PJJptkfTsOxUM9hF7Bt7C72cih5IqXK_S_78zmAx-q4Fsgu8kyH9n5ZWfmB_CtQO_jcVL61goEKAoBig5t4cc6KUorcY4KHNlEOh5nDw_yfgl-9LUw1lqXfGbP6NKd5Rczs6BfZedoa2lEFeWfRBzzsKnW6s8MYuF4kDGGQR9HINGVyATyfHI_uBtRHpc8w-0tiVKi6YsQS3BJLMWvdiRHsfJ2tOl2nav1j613A7600SUbNOawCUu22oL1jrmBtY68BZ9ftSHchqFjZZ4rskU2qGtlnhjhUza6YEP6WDNHnTktiTab6b_s5_SxohQj1ApryhPmO_Dr6nIyvPZbcgXfRCKs_VQZraUU3MSZEjosEmMQJvO4FEZpLo2wiYpUxiOLEZ5CsCmT0oTclGkWSKWjXViuZpX9CqwslJYxKjbJqH1gpkOcizhMZRQMBqEHYSfg3LSdx4kA4zl3CCSQudNPTvrJW_148L2f87vpu_Hu6G2Sfj-yFbwHh50e89Y15zlHiEb9nKLUg9P-NjoVnZSoys4WOIbj0gUiw8SDvUb__bM7s9n__ztPYPV6cneb347GNwewxikFxqWsHcJy_bKwR7Bi_tTT-cuxs95_djbnhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+Attack+Type+I%3A+Cheat+Classifiers+by+Significant+Changes&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tang%2C+Sanli&rft.au=Huang%2C+Xiaolin&rft.au=Chen%2C+Mingjian&rft.au=Sun%2C+Chengjin&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=3&rft.spage=1100&rft_id=info:doi/10.1109%2FTPAMI.2019.2936378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon