Towards a Complete 3D Morphable Model of the Human Head
Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two method...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 11; pp. 4142 - 4160 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color. |
|---|---|
| AbstractList | Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color. Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: i. use a regressor to complete missing parts of one model using the other, ii. use the Gaussian Process framework to blend covariance matrices from multiple models. Thus we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color. Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color. |
| Author | Ploumpis, Stylianos Sullivan, Eimear Oa Smith, William A. P. Ververas, Evangelos Moschoglou, Stylianos Pears, Nick Wang, Haoyang Zafeiriou, Stefanos Gecer, Baris |
| Author_xml | – sequence: 1 givenname: Stylianos orcidid: 0000-0002-4836-1513 surname: Ploumpis fullname: Ploumpis, Stylianos email: s.ploumpis@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 2 givenname: Evangelos orcidid: 0000-0003-4345-1744 surname: Ververas fullname: Ververas, Evangelos email: e.ververas16@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 3 givenname: Eimear Oa orcidid: 0000-0003-0525-3341 surname: Sullivan fullname: Sullivan, Eimear Oa email: e.o-sullivan16@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 4 givenname: Stylianos orcidid: 0000-0001-7421-1335 surname: Moschoglou fullname: Moschoglou, Stylianos email: s.moschoglou@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 5 givenname: Haoyang orcidid: 0000-0001-8236-6628 surname: Wang fullname: Wang, Haoyang email: haoyang.wang15@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 6 givenname: Nick orcidid: 0000-0001-9513-5634 surname: Pears fullname: Pears, Nick email: nick.pears@york.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 7 givenname: William A. P. orcidid: 0000-0002-6047-0413 surname: Smith fullname: Smith, William A. P. email: william.smith@york.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 8 givenname: Baris orcidid: 0000-0002-5684-2843 surname: Gecer fullname: Gecer, Baris email: b.gecer@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 9 givenname: Stefanos orcidid: 0000-0002-5222-1740 surname: Zafeiriou fullname: Zafeiriou, Stefanos email: s.zafeiriou@imperial.ac.uk organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32356737$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kLtOwzAUQC1URMvjB0BCkVhYUvxIfO0RlUeRQDCU2XKdGxGUxMVOhPh7UloYOjD5DudcXZ9DMmp9i4ScMjpljOqrxcv108OUU06nXGvGcrpHJpxJmmqu-YhMKJM8VYqrMTmM8Z1SluVUHJCx4CKXIGBCYOE_bShiYpOZb1Y1dpiIm-TJh9WbXdY4TAXWiS-T7g2Ted_YNpmjLY7JfmnriCfb94i83t0uZvP08fn-YXb9mDqRsy4F4AoLmZUZuLIUUDi9LJxCKREshyyjipYal1lJrWPKUedA2MKBYxKcFOKIXG72roL_6DF2pqmiw7q2Lfo-Gi40SAk5yAG92EHffR_a4TrDc1DDl_NMDdT5luqXDRZmFarGhi_zm2QA1AZwwccYsDSu6mxX-bYLtqoNo2Zd3_zUN-v6Zlt_UPmO-rv9X-lsI1WI-CdoqjgDJb4Bd6uNBA |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_diagnostics12071516 crossref_primary_10_4103_jpn_JPN_48_22 crossref_primary_10_1515_teme_2021_0082 crossref_primary_10_1109_TMM_2024_3405721 crossref_primary_10_1109_MPRV_2023_3276471 crossref_primary_10_1111_cgf_14793 crossref_primary_10_1016_j_compbiomed_2024_108689 crossref_primary_10_1007_s11042_024_19583_0 crossref_primary_10_1109_TVCG_2025_3530484 crossref_primary_10_1109_TMM_2024_3521835 crossref_primary_10_1109_TVCG_2023_3284500 crossref_primary_10_1016_j_cag_2025_104214 crossref_primary_10_1109_TPAMI_2021_3090942 crossref_primary_10_1145_3635717 crossref_primary_10_1002_ar_24582 crossref_primary_10_1016_j_imavis_2024_105075 crossref_primary_10_1109_ACCESS_2020_3031886 crossref_primary_10_1016_j_bonr_2022_101528 crossref_primary_10_1007_s11263_021_01494_4 crossref_primary_10_1109_TPAMI_2021_3084524 crossref_primary_10_1109_ACCESS_2024_3396632 crossref_primary_10_1111_cgf_14641 crossref_primary_10_1016_j_prosdent_2024_03_006 crossref_primary_10_1038_s41591_022_01966_1 crossref_primary_10_1145_3528223_3530143 crossref_primary_10_1016_j_displa_2024_102725 crossref_primary_10_1007_s11263_023_01825_7 crossref_primary_10_1109_TPAMI_2021_3125598 crossref_primary_10_1109_ACCESS_2021_3111811 crossref_primary_10_1016_j_cag_2025_104324 crossref_primary_10_1145_3550454_3555462 crossref_primary_10_1109_LSP_2023_3238908 crossref_primary_10_1016_j_imavis_2024_105043 crossref_primary_10_1145_3450626_3459936 |
| Cites_doi | 10.1109/FG.2017.79 10.1109/FG.2018.00064 10.1109/TPAMI.2009.30 10.1007/978-3-030-01261-8_44 10.1111/j.1467-8659.2009.01373.x 10.1109/TPAMI.2014.2313123 10.1109/CVPR.2015.7299081 10.1145/311535.311556 10.1109/ICCV.2015.411 10.1016/j.patcog.2017.09.006 10.1109/TPAMI.2017.2739743 10.1109/CVPR.2018.00767 10.1109/TPAMI.2003.1227983 10.1109/ICCV.2017.335 10.1145/2431211.2431221 10.1109/CVPR.2016.598 10.1109/CVPR.2019.00125 10.1007/s11263-019-01151-x 10.1109/FG.2018.00065 10.1007/978-3-319-46475-6_23 10.1109/CVPR.2017.580 10.5220/0005669500790086 10.1109/CVPR.2017.163 10.1145/3130800.31310887 10.1109/CVPR.2016.23 10.1007/978-3-030-01219-9_43 10.1109/CVPR.2019.00122 10.1145/3130800.3130813 10.1145/3130800.3130883 10.1109/FG.2018.00027 10.1016/j.cviu.2014.05.005 10.1007/3-540-44887-X_8 10.1109/ICASSP.2016.7471981 10.1145/2661229.2661285 10.1145/2578153.2578190 10.1007/s11263-011-0436-0 10.1109/CVPRW.2017.250 10.1109/TPAMI.2012.206 10.1109/FG.2018.00021 10.1109/ICPR.2014.210 10.1109/TMM.2013.2282134 10.1007/s11263-008-0152-6 10.1007/978-3-319-46484-8_5 10.1117/12.849965 10.1109/CVPR.2007.383165 10.1007/978-3-319-46448-0_18 10.1109/CVPR.2018.00917 10.1109/CVPR.2019.01119 10.1109/AVSS.2009.58 10.1145/882262.882311 10.1016/j.jcms.2015.02.005 10.1109/CVPR.2014.235 10.1049/iet-bmt.2011.0003 10.1145/2897824.2925962 10.1109/CVPR.2018.00868 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2020.2991150 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 4160 |
| ExternalDocumentID | 32356737 10_1109_TPAMI_2020_2991150 9082178 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: EPSRC Project grantid: EP/N007743/1 – fundername: Large Scale Shape Analysis of Deformable Models of Humans grantid: EP/S010203/1 – fundername: Royal Academy of Engineering funderid: 10.13039/501100000287 – fundername: Google Faculty Award – fundername: Google Daydream Award |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-7728ed64f47cff37dc9bdc8e66e7a2744080f9eb4f0ac18c0cc73adc7c167c633 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 80 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702649700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 22:27:40 EDT 2025 Mon Jun 30 05:51:37 EDT 2025 Wed Feb 19 02:30:42 EST 2025 Tue Nov 18 21:24:08 EST 2025 Sat Nov 29 05:15:59 EST 2025 Wed Aug 27 02:26:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-7728ed64f47cff37dc9bdc8e66e7a2744080f9eb4f0ac18c0cc73adc7c167c633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7421-1335 0000-0002-6047-0413 0000-0002-4836-1513 0000-0001-8236-6628 0000-0003-0525-3341 0000-0002-5222-1740 0000-0001-9513-5634 0000-0003-4345-1744 0000-0002-5684-2843 |
| PMID | 32356737 |
| PQID | 2578235548 |
| PQPubID | 85458 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2397667576 proquest_journals_2578235548 pubmed_primary_32356737 ieee_primary_9082178 crossref_citationtrail_10_1109_TPAMI_2020_2991150 crossref_primary_10_1109_TPAMI_2020_2991150 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 moschoglou (ref52) 2019 ref12 ref59 ref58 ref14 ref53 ref55 ref11 de smet and (ref21) 2010 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 egger (ref15) 2019 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 blackwell (ref30) 2002 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref65 ref28 ref27 zhu (ref10) 2015 ref29 ref60 ref62 davies (ref54) 2008 ref61 zhu (ref13) 2015 |
| References_xml | – ident: ref58 doi: 10.1109/FG.2017.79 – start-page: 1 year: 2015 ident: ref10 article-title: Discriminative 3D morphable model fitting publication-title: Proc 11th IEEE Int Conf Workshops Autom Face Gesture Recognit – ident: ref50 doi: 10.1109/FG.2018.00064 – ident: ref33 doi: 10.1109/TPAMI.2009.30 – year: 2019 ident: ref15 article-title: 3D morphable face models-past, present and future – ident: ref35 doi: 10.1007/978-3-030-01261-8_44 – ident: ref5 doi: 10.1111/j.1467-8659.2009.01373.x – ident: ref64 doi: 10.1109/TPAMI.2014.2313123 – ident: ref34 doi: 10.1109/CVPR.2015.7299081 – year: 2008 ident: ref54 publication-title: Statistical Models of Shape Optimisation and Evaluation – ident: ref17 doi: 10.1145/311535.311556 – ident: ref56 doi: 10.1109/ICCV.2015.411 – ident: ref48 doi: 10.1016/j.patcog.2017.09.006 – ident: ref46 doi: 10.1109/TPAMI.2017.2739743 – ident: ref27 doi: 10.1109/CVPR.2018.00767 – ident: ref1 doi: 10.1109/TPAMI.2003.1227983 – ident: ref14 doi: 10.1109/ICCV.2017.335 – ident: ref40 doi: 10.1145/2431211.2431221 – year: 2002 ident: ref30 article-title: Civilian American and European surface anthropometry resource (CAESAR). Volume 2: Descriptions – ident: ref20 doi: 10.1109/CVPR.2016.598 – ident: ref23 doi: 10.1109/CVPR.2019.00125 – ident: ref24 doi: 10.1007/s11263-019-01151-x – ident: ref44 doi: 10.1109/FG.2018.00065 – ident: ref57 doi: 10.1007/978-3-319-46475-6_23 – year: 2019 ident: ref52 article-title: 3DFaceGAN: Adversarial nets for 3D face representation, generation, and translation – ident: ref22 doi: 10.1109/CVPR.2017.580 – ident: ref9 doi: 10.5220/0005669500790086 – ident: ref28 doi: 10.1109/CVPR.2017.163 – ident: ref32 doi: 10.1145/3130800.31310887 – ident: ref11 doi: 10.1109/CVPR.2016.23 – ident: ref31 doi: 10.1007/978-3-030-01219-9_43 – ident: ref62 doi: 10.1109/CVPR.2015.7299081 – ident: ref26 doi: 10.1109/CVPR.2019.00122 – ident: ref29 doi: 10.1145/3130800.3130813 – ident: ref7 doi: 10.1145/3130800.3130883 – ident: ref25 doi: 10.1109/FG.2018.00027 – ident: ref55 doi: 10.1016/j.cviu.2014.05.005 – ident: ref12 doi: 10.1007/3-540-44887-X_8 – start-page: 276 year: 2010 ident: ref21 article-title: Optimal regions for linear model-based 3D face reconstruction publication-title: Proc Asian Conf Comput Vis – ident: ref43 doi: 10.1109/ICASSP.2016.7471981 – ident: ref37 doi: 10.1145/2661229.2661285 – ident: ref61 doi: 10.1145/2578153.2578190 – ident: ref41 doi: 10.1007/s11263-011-0436-0 – ident: ref51 doi: 10.1109/CVPRW.2017.250 – ident: ref3 doi: 10.1109/TPAMI.2012.206 – ident: ref47 doi: 10.1109/FG.2018.00021 – ident: ref65 doi: 10.1109/ICPR.2014.210 – start-page: 787 year: 2015 ident: ref13 article-title: High-fidelity pose and expression normalization for face recognition in the wild publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref45 doi: 10.1109/TMM.2013.2282134 – ident: ref59 doi: 10.1007/s11263-008-0152-6 – ident: ref2 doi: 10.1007/978-3-319-46484-8_5 – ident: ref42 doi: 10.1117/12.849965 – ident: ref19 doi: 10.1109/CVPR.2007.383165 – ident: ref60 doi: 10.1007/978-3-319-46448-0_18 – ident: ref53 doi: 10.1109/CVPR.2018.00917 – ident: ref38 doi: 10.1007/978-3-319-46448-0_18 – ident: ref16 doi: 10.1109/CVPR.2019.01119 – ident: ref18 doi: 10.1109/AVSS.2009.58 – ident: ref6 doi: 10.1145/882262.882311 – ident: ref4 doi: 10.1016/j.jcms.2015.02.005 – ident: ref63 doi: 10.1109/CVPR.2014.235 – ident: ref39 doi: 10.1049/iet-bmt.2011.0003 – ident: ref36 doi: 10.1145/2897824.2925962 – ident: ref8 doi: 10.1109/CVPR.2018.00868 – ident: ref49 doi: 10.1109/TMM.2013.2282134 |
| SSID | ssj0014503 |
| Score | 2.637822 |
| Snippet | Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the... Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4142 |
| SubjectTerms | 3D reconstruction 3DMM Computational modeling Covariance matrix craniofacial 3DMM Cranium Ear Eye movements Face Gaussian process Head Image reconstruction Magnetic heads morphable model combination Shape Three dimensional models Three-dimensional displays Tongue |
| Title | Towards a Complete 3D Morphable Model of the Human Head |
| URI | https://ieeexplore.ieee.org/document/9082178 https://www.ncbi.nlm.nih.gov/pubmed/32356737 https://www.proquest.com/docview/2578235548 https://www.proquest.com/docview/2397667576 |
| Volume | 43 |
| WOSCitedRecordID | wos000702649700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9OKaIPWj-q156yQt80mmRz-_EofmBBxYcr3FvYzG5AkEvx7vr3d2YvCS3YQt8CO_lgZybzm92d-QF8NXWBNoQ8cYStE4rHLrGV9YmzRhrlKWi42DL_QT89menUPg_gvK-FCSHEw2fhgi_jXr5vcMlLZZdMz51pswZrWutVrVa_Y1CMIwsyIRjycEojugKZ1F5Onq8ev1EqmKcX9PNlCLQJGzKXY-Zo-SMeRYKVv2PNGHPudv7vaz_CdostxdXKGHZhEGZ7sNPxNojWjfdg67cmhPugJ_Hk7Fw4waKkxyDkjXhsSANcVyWYLu1VNLUgrCjior-4J8s4gO93t5Pr-6SlU0hQjrMF42gTvCrqQmNdS-3RVh5NUCpoFxsFmrS2oSrq1GFmMEXU0nnUmCmNSspPsD5rZuEIRK105hxWlBtigd47RIVcdauLCivMh5B1k1pi22ucKS9ey5hzpLaMOilZJ2WrkyGc9ff8WHXa-Kf0Ps94L9lO9hBGne7K1hnnJf-VcsZVNHzaD5Mb8d6Im4VmSTKMyyh50moIhyud98_uTOXz--_8Aps5H3SJBYojWF-8LcMxfMCfi5f52wnZ6tScRFv9BdAJ4Nc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vgmg5UGh5LBQwEjeaNom9fhwroNqK3VUPi9Rb5IwdCanaVN1dfj8z3iQCCZC4RfLkIc9M5hvbMx_AB9sodDGWmSdsnVE89pmrXci8s9LqQEHDp5b5UzOf2-trd7UDJ0MtTIwxHT6Lp3yZ9vJDixteKjtjeu7C2Htwf6xUWWyrtYY9AzVOPMiEYcjHKZHoS2Ryd7a4Op9dUjJY5qf0-2UQtA8PZSnHzNLyW0RKFCt_R5sp6lwc_N_3PoHHHboU51tzeAo7cXkIBz1zg-gc-RAe_dKG8AjMIp2dXQkvWJQ0GYX8LGYt6YArqwQTpt2IthGEFkVa9hcTso1n8O3iy-LTJOsIFTKU42LNSNrGoFWjDDaNNAFdHdBGraPxqVWgzRsXa9XkHguLOaKRPqDBQhvUUj6H3WW7jC9BNNoU3mNN2SEqDMEjauS6W6NqrLEcQdFPaoVdt3EmvbipUtaRuyrppGKdVJ1ORvBxuOd222vjn9JHPOODZDfZIzjudVd17riq-L9UMrKi4ffDMDkS7474ZWw3JMPIjNIno0fwYqvz4dm9qbz68zvfwd5kMZtW08v519ewX_Kxl1SueAy767tNfAMP8Mf6--rubbLYn17p4zY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+complete+3D+morphable+model+of+the+human+head&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ploumpis%2C+Stylianos&rft.au=Ververas%2C+Evangelos&rft.au=O%27+Sullivan%2C+Eimear&rft.au=Moschoglou%2C+Stylianos&rft.date=2021-11-01&rft.eissn=1939-3539&rft_id=info:doi/10.1109%2FTPAMI.2020.2991150&rft_id=info%3Apmid%2F32356737&rft.externalDocID=32356737 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |