Blind Denoising Autoencoder

The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 30; no. 1; pp. 312 - 317
Main Author: Majumdar, Angshul
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learned with. This will be the first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (K-singular value decomposition), transform learning, sparse stacked denoising autoencoder, and the gold standard BM3D algorithm.
AbstractList The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learned with. This will be the first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (K-singular value decomposition), transform learning, sparse stacked denoising autoencoder, and the gold standard BM3D algorithm.
The term ``blind denoising'' refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learned with. This will be the first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (K-singular value decomposition), transform learning, sparse stacked denoising autoencoder, and the gold standard BM3D algorithm.The term ``blind denoising'' refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learned with. This will be the first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (K-singular value decomposition), transform learning, sparse stacked denoising autoencoder, and the gold standard BM3D algorithm.
Author Majumdar, Angshul
Author_xml – sequence: 1
  givenname: Angshul
  orcidid: 0000-0002-1065-3000
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology, New Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994276$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1UREvpH6ASqsTC0uKvOPZYyqdUlYEObFbqXJCr1C52MvDvSejH0AEvZ-me53T3XqKO8w4QuiZ4QghW98vFYv4xoZjICZVMilSdoR4lgo4pk7Jz_KefXTSIcY2bJ3AiuLpAXaqU4jQVPTR8KK3LR4_gvI3WfY2mdeXBGZ9DuELnRVZGGOxrHy2fn5az1_H8_eVtNp2PDUtINU5FaigGkCrPJKMFNZQznBmeE1EoI3ghEsMkppwbQXJFuSxwknKsVmCKnPXR3W7sNvjvGmKlNzYaKMvMga-jplhIxhQjrEFvT9C1r4NrltOUJO1RRLTUzZ6qVxvI9TbYTRZ-9OHqBpA7wAQfY4BCG1tllfWuCpktNcG6zVj_ZazbjPU-40alJ-ph-r_ScCdZADgKTZOlWLFfihyD8g
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2019_2923756
crossref_primary_10_1016_j_compeleceng_2023_108708
crossref_primary_10_1016_j_ultramic_2025_114192
crossref_primary_10_1007_s12652_020_02352_w
crossref_primary_10_1016_j_sigpro_2021_108300
crossref_primary_10_1016_j_engappai_2023_105838
crossref_primary_10_1109_ACCESS_2019_2936861
crossref_primary_10_1016_j_knosys_2022_108653
crossref_primary_10_1109_TNNLS_2020_3048031
crossref_primary_10_1016_j_expthermflusci_2024_111195
crossref_primary_10_3233_JIFS_212679
crossref_primary_10_1016_j_neunet_2020_07_025
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1109_TIFS_2024_3354412
crossref_primary_10_1109_TKDE_2022_3186498
crossref_primary_10_1007_s41870_022_00931_y
crossref_primary_10_1109_TNNLS_2022_3232147
crossref_primary_10_1109_TAI_2024_3394795
crossref_primary_10_1007_s10489_021_03054_2
crossref_primary_10_1109_TVCG_2023_3337868
crossref_primary_10_1007_s42484_025_00297_x
crossref_primary_10_3390_rs15245739
crossref_primary_10_1016_j_sigpro_2020_107729
crossref_primary_10_1016_j_compeleceng_2022_107845
crossref_primary_10_1109_ACCESS_2024_3389669
crossref_primary_10_1016_j_engappai_2024_108267
crossref_primary_10_3390_en14217129
crossref_primary_10_1016_j_asr_2022_05_068
crossref_primary_10_7717_peerj_cs_1061
crossref_primary_10_1109_ACCESS_2020_3038552
crossref_primary_10_1088_1742_6596_2609_1_012007
crossref_primary_10_1016_j_sasc_2024_200122
crossref_primary_10_1088_1361_6501_ad4f00
crossref_primary_10_1038_s41598_025_92293_1
crossref_primary_10_1109_TNNLS_2020_3042434
crossref_primary_10_1109_JSEN_2023_3283923
crossref_primary_10_1049_iet_ipr_2019_0096
crossref_primary_10_1109_TNNLS_2023_3278866
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_3390_s25175528
crossref_primary_10_1109_TNNLS_2020_3037923
crossref_primary_10_3390_math13071119
crossref_primary_10_3390_sym17030424
crossref_primary_10_1109_TIP_2023_3333564
crossref_primary_10_1002_ima_22668
crossref_primary_10_3390_e25101467
crossref_primary_10_1016_j_compstruct_2024_118727
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1088_1361_6463_acd261
crossref_primary_10_1109_TSG_2023_3286490
crossref_primary_10_1007_s12046_023_02326_6
crossref_primary_10_1109_TNNLS_2021_3104974
crossref_primary_10_1016_j_neunet_2020_05_020
crossref_primary_10_1109_TCYB_2020_2978500
crossref_primary_10_3390_electronics13081423
crossref_primary_10_1162_neco_a_01273
crossref_primary_10_3390_app12168256
crossref_primary_10_1016_j_apacoust_2023_109426
Cites_doi 10.1038/44565
10.1109/TNNLS.2011.2178325
10.1137/080725891
10.1109/TSP.2006.881199
10.1109/JSTSP.2015.2417131
10.1109/ICASSP.2017.7952400
10.1109/TNN.2011.2172457
10.1109/TIP.2017.2662206
10.1109/TSP.2015.2405503
10.1016/S0042-6989(97)00169-7
10.1109/ICIP.2015.7350771
10.1109/TNN.2011.2170094
10.1109/CVPR.2012.6247952
10.1109/TSP.2012.2226449
10.1002/cpa.20042
10.1109/TSP.2012.2208955
10.1016/j.sigpro.2013.03.005
10.1109/TIP.2012.2227766
10.1109/LSP.2016.2616354
10.1007/s10915-009-9331-z
10.1109/18.382009
10.1561/2200000016
10.1109/TMI.2010.2090538
10.1109/TNNLS.2012.2185950
10.1109/TIP.2006.881969
10.1109/83.862630
10.1109/97.720560
10.1007/s11263-014-0761-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2838679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 317
ExternalDocumentID 29994276
10_1109_TNNLS_2018_2838679
8383709
Genre orig-research
Journal Article
GrantInformation_xml – fundername: DST-CNRS-2016-02
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-767c20ee89da832f2c2430ac4d16f9c64f65c380244c61d9248f057409becfd3
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454329300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 10:08:00 EDT 2025
Sun Nov 30 05:06:44 EST 2025
Thu Jan 02 22:35:01 EST 2025
Tue Nov 18 22:00:29 EST 2025
Sat Nov 29 01:40:00 EST 2025
Wed Aug 27 02:53:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-767c20ee89da832f2c2430ac4d16f9c64f65c380244c61d9248f057409becfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1065-3000
PMID 29994276
PQID 2159994163
PQPubID 85436
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2018_2838679
crossref_primary_10_1109_TNNLS_2018_2838679
proquest_miscellaneous_2068339313
proquest_journals_2159994163
ieee_primary_8383709
pubmed_primary_29994276
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref31
ref30
ref33
wanga (ref21) 2013; 93
ref32
ref2
ref1
ref17
ref19
ref18
he (ref16) 2011; 22
parikh (ref29) 2013; 1
wen (ref8) 2014; 114
(ref24) 0
agostinelli (ref11) 2013
lee (ref14) 1999; 401
ref23
ref26
ref25
ref20
im (ref4) 2012; 23
ref22
ref28
ref27
ref7
cho (ref10) 2013
ref9
ref3
ref6
xie (ref12) 2012
ref5
References_xml – volume: 401
  start-page: 788
  year: 1999
  ident: ref14
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: ref5
  doi: 10.1109/TNNLS.2011.2178325
– ident: ref26
  doi: 10.1137/080725891
– ident: ref6
  doi: 10.1109/TSP.2006.881199
– start-page: 1493
  year: 2013
  ident: ref11
  article-title: Adaptive multi-column deep neural networks with application to robust image denoising
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 1
  start-page: 123
  year: 2013
  ident: ref29
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– ident: ref23
  doi: 10.1109/JSTSP.2015.2417131
– ident: ref32
  doi: 10.1109/ICASSP.2017.7952400
– volume: 22
  start-page: 2117
  year: 2011
  ident: ref16
  article-title: Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2172457
– start-page: 341
  year: 2012
  ident: ref12
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1109/TIP.2017.2662206
– start-page: iii-432
  year: 2013
  ident: ref10
  article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly noisy images
  publication-title: Proc ACM ICML
– ident: ref31
  doi: 10.1109/TSP.2015.2405503
– ident: ref15
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref9
  doi: 10.1109/ICIP.2015.7350771
– ident: ref17
  doi: 10.1109/TNN.2011.2170094
– ident: ref13
  doi: 10.1109/CVPR.2012.6247952
– ident: ref22
  doi: 10.1109/TSP.2012.2226449
– ident: ref30
  doi: 10.1002/cpa.20042
– ident: ref27
  doi: 10.1109/TSP.2012.2208955
– volume: 93
  start-page: 2696
  year: 2013
  ident: ref21
  article-title: Dictionary learning based impulse noise removal via L1-L1 minimization
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.03.005
– ident: ref20
  doi: 10.1109/TIP.2012.2227766
– ident: ref18
  doi: 10.1109/LSP.2016.2616354
– ident: ref25
  doi: 10.1007/s10915-009-9331-z
– ident: ref1
  doi: 10.1109/18.382009
– ident: ref28
  doi: 10.1561/2200000016
– ident: ref19
  doi: 10.1109/TMI.2010.2090538
– volume: 23
  start-page: 644
  year: 2012
  ident: ref4
  article-title: Tangent hyperplane kernel principal component analysis for denoising
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2185950
– year: 0
  ident: ref24
  publication-title: Transforming Learning
– ident: ref7
  doi: 10.1109/TIP.2006.881969
– ident: ref33
  doi: 10.1109/TIP.2017.2662206
– ident: ref3
  doi: 10.1109/83.862630
– ident: ref2
  doi: 10.1109/97.720560
– volume: 114
  start-page: 137
  year: 2014
  ident: ref8
  article-title: Structured overcomplete sparsifying transform learning with convergence guarantees and applications
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0761-1
SSID ssj0000605649
Score 2.5798101
Snippet The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning-...
The term ``blind denoising'' refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary...
The term “blind denoising” refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning-...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 312
SubjectTerms Autoencoder
denoising
Dictionaries
Formulations
Learning
Machine learning
Model testing
Noise measurement
Noise reduction
Singular value decomposition
Training
Training data
Transforms
Title Blind Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/8383709
https://www.ncbi.nlm.nih.gov/pubmed/29994276
https://www.proquest.com/docview/2159994163
https://www.proquest.com/docview/2068339313
Volume 30
WOSCitedRecordID wos000454329300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8eDF1_pYXaWCN-2apm0ex_WFh6UILtJbaZMUBGll7fr7naTdgqCCt0InbZgH880kMwNwERfCMKWlL3Ih_cho7Re8iH1dMqIjjhrhKrxfZjxJRJrKpwFc9bUwxhh3-cxM7KM7y9e1WtpU2bWw4ZSt1lvjnLe1Wn0-hSAuZw7t0oBRn4Y8XdXIEHk9T5LZs73IJSboT22TuW9-yA1W-R1jOl_zsP2_Xe7AVocpvWmrBLswMNUebK_mNXid-Q7h5AYxpfbuTFW_2hSBN102tW1kqc1iH-YP9_PbR78bjuCrMA4anzOuKDFGSJ2jVZZU0SgkuYp0wEqpWFSyWIUCXXCkWKAxzBIlYjMM51BqpQ4PYL2qK3MEHtphEeV5ySmGekyRnBQqVoHINdWGRfEIghWnMtU1DrfzK94yF0AQmTnuZpa7WcfdEVz2a97bthl_Ug8tG3vKjoMjGK8EknWW9ZEhREFMa2HkCM7712gT9qAjr0y9RBrCRBjKMECaw1aQ_bepXU05O_75nyewiTuTbZJlDOvNYmlOYUN9Nq8fizNUvFScOcX7AkkC0TI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5kFfTF-1jPCr5p1zRN0-TRa1lxLYKL7FtpkxQEaWXd9fc7SbsFQQXfCp20YQ7mm0lmBuAsyoXhSktfZEL6zGjt53Ee-brgRLMYNcJVeL8M4yQR47F8WoCLthbGGOMun5mefXRn-bpSM5squxQ2nLLVeosRYzSoq7XajApBZM4d3qUBpz4N4_G8SobIy1GSDJ_tVS7RQ49q28x980RutMrvKNN5m_7a__a5DqsNqvSuajXYgAVTbsLafGKD1xjwFhxcI6rU3q0pq1ebJPCuZtPKtrLUZrINo_7d6GbgN-MRfBVGwdSPeawoMUZInaFdFlRRFpJMMR3wQirOCh6pUKATZooHGgMtUSA6w4AO5VbocAc6ZVWaPfDQEnOWZUVMMdjjimQkV5EKRKapNpxFXQjmnEpV0zrcTrB4S10IQWTquJta7qYNd7tw3q55rxtn_Em9ZdnYUjYc7MLhXCBpY1sfKYIURLUWSHbhtH2NVmGPOrLSVDOkIVyEoQwDpNmtBdl-m9rVNOb7P__zBJYHo8dhOrxPHg5gBXcp65TLIXSmk5k5giX1OX39mBw79fsCaAjTkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blind+Denoising+Autoencoder&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Majumdar%2C+Angshul&rft.date=2019-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=30&rft.issue=1&rft.spage=312&rft_id=info:doi/10.1109%2FTNNLS.2018.2838679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon