Blind Denoising Autoencoder

The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 30; číslo 1; s. 312 - 317
Hlavný autor: Majumdar, Angshul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The term "blind denoising" refers to the fact that the basis used for denoising is learned from the noisy sample itself during denoising. Dictionary learning- and transform learning-based formulations for blind denoising are well known. But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learned with. This will be the first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (K-singular value decomposition), transform learning, sparse stacked denoising autoencoder, and the gold standard BM3D algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2838679