Sparse and Dense Hybrid Representation via Dictionary Decomposition for Face Recognition

Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications. Face identification is an example where w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 37; číslo 5; s. 1067 - 1079
Hlavní autoři: Jiang, Xudong, Lai, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications. Face identification is an example where we have a large number of identities but sufficient representative and uncorrupted training images cannot be guaranteed for every identity. A violation of the two conditions leads to a poor performance of the sparse representation-based classification (SRC). This paper addresses this critic issue by analyzing the merits and limitations of SRC. A sparse- and dense-hybrid representation (SDR) framework is proposed in this paper to alleviate the problems of SRC. We further propose a procedure of supervised low-rank (SLR) dictionary decomposition to facilitate the proposed SDR framework. In addition, the problem of the corrupted training data is also alleviated by the proposed SLR dictionary decomposition. The application of the proposed SDR-SLR approach in face recognition verifies its effectiveness and advancement to the field. Extensive experiments on benchmark face databases demonstrate that it consistently outperforms the state-of-the-art sparse representation based approaches and the performance gains are significant in most cases.
AbstractList Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications. Face identification is an example where we have a large number of identities but sufficient representative and uncorrupted training images cannot be guaranteed for every identity. A violation of the two conditions leads to a poor performance of the sparse representation-based classification (SRC). This paper addresses this critic issue by analyzing the merits and limitations of SRC. A sparse- and dense-hybrid representation (SDR) framework is proposed in this paper to alleviate the problems of SRC. We further propose a procedure of supervised low-rank (SLR) dictionary decomposition to facilitate the proposed SDR framework. In addition, the problem of the corrupted training data is also alleviated by the proposed SLR dictionary decomposition. The application of the proposed SDR-SLR approach in face recognition verifies its effectiveness and advancement to the field. Extensive experiments on benchmark face databases demonstrate that it consistently outperforms the state-of-the-art sparse representation based approaches and the performance gains are significant in most cases.
Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications. Face identification is an example where we have a large number of identities but sufficient representative and uncorrupted training images cannot be guaranteed for every identity. A violation of the two conditions leads to a poor performance of the sparse representation-based classification (SRC). This paper addresses this critic issue by analyzing the merits and limitations of SRC. A sparse- and dense-hybrid representation (SDR) framework is proposed in this paper to alleviate the problems of SRC. We further propose a procedure of supervised low-rank (SLR) dictionary decomposition to facilitate the proposed SDR framework. In addition, the problem of the corrupted training data is also alleviated by the proposed SLR dictionary decomposition. The application of the proposed SDR-SLR approach in face recognition verifies its effectiveness and advancement to the field. Extensive experiments on benchmark face databases demonstrate that it consistently outperforms the state-of-the-art sparse representation based approaches and the performance gains are significant in most cases.Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications. Face identification is an example where we have a large number of identities but sufficient representative and uncorrupted training images cannot be guaranteed for every identity. A violation of the two conditions leads to a poor performance of the sparse representation-based classification (SRC). This paper addresses this critic issue by analyzing the merits and limitations of SRC. A sparse- and dense-hybrid representation (SDR) framework is proposed in this paper to alleviate the problems of SRC. We further propose a procedure of supervised low-rank (SLR) dictionary decomposition to facilitate the proposed SDR framework. In addition, the problem of the corrupted training data is also alleviated by the proposed SLR dictionary decomposition. The application of the proposed SDR-SLR approach in face recognition verifies its effectiveness and advancement to the field. Extensive experiments on benchmark face databases demonstrate that it consistently outperforms the state-of-the-art sparse representation based approaches and the performance gains are significant in most cases.
Author Xudong Jiang
Jian Lai
Author_xml – sequence: 1
  givenname: Xudong
  surname: Jiang
  fullname: Jiang, Xudong
– sequence: 2
  givenname: Jian
  surname: Lai
  fullname: Lai, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353329$$D View this record in MEDLINE/PubMed
BookMark eNp9kclKBDEQhoMoOi4voCANXrz0mKWTTo7iDoriAt5COl0tkZmkTXoE397MogcPnlKkvi9U6t9G6z54QGif4DEhWJ08P5ze3YwpJtWYMq4qztbQiBKBS0UVXUcjTAQtpaRyC22n9I4zyTHbRFtUMM4YVSP0-tSbmKAwvi3Owefq-quJri0eoY-QwA9mcMEXn84U587OaxO_MmrDtA_JLZpdiMWlsZAlG9784nIXbXRmkmBvde6gl8uL57Pr8vb-6ubs9La0jJOhrAXuTGcss5YZU0neNq2inBIpu5rleatK4qa1AhSxylQEZGtMrSrRiNzo2A46Xr7bx_AxgzToqUsWJhPjIcySJjUhnFW8Zhk9-oO-h1n0eTpNhFJYSEFJpg5X1KyZQqv76Kb5y_pnZxmQS8DGkFKETlu33NIQjZtogvU8Hr2IR8_j0at4skr_qD-v_ysdLCUHAL-CUJhLptg3L3CagQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s10044_021_00987_9
crossref_primary_10_1016_j_compbiomed_2018_05_026
crossref_primary_10_1186_s13634_016_0328_0
crossref_primary_10_1016_j_patcog_2020_107640
crossref_primary_10_1109_TCSVT_2018_2849757
crossref_primary_10_1016_j_neucom_2019_11_084
crossref_primary_10_1016_j_ymssp_2017_02_043
crossref_primary_10_1016_j_patcog_2018_06_015
crossref_primary_10_1109_TIP_2017_2681841
crossref_primary_10_1109_TIP_2019_2926774
crossref_primary_10_1109_TIP_2015_2470598
crossref_primary_10_1088_1742_6596_2224_1_012105
crossref_primary_10_1109_TNNLS_2019_2945372
crossref_primary_10_1016_j_knosys_2019_06_031
crossref_primary_10_1007_s13369_018_3132_3
crossref_primary_10_1007_s40747_022_00868_6
crossref_primary_10_1109_TCYB_2016_2623638
crossref_primary_10_1007_s10489_022_03446_y
crossref_primary_10_1109_TIE_2018_2801809
crossref_primary_10_1016_j_compeleceng_2022_108090
crossref_primary_10_1007_s11042_021_10825_z
crossref_primary_10_1109_TGCN_2021_3062972
crossref_primary_10_1186_s13634_018_0572_6
crossref_primary_10_1109_TIP_2017_2764622
crossref_primary_10_3390_app11041861
crossref_primary_10_1016_j_knosys_2016_06_001
crossref_primary_10_1007_s11704_019_7200_y
crossref_primary_10_3390_electronics10111271
crossref_primary_10_1155_2019_7835797
crossref_primary_10_3389_fnagi_2016_00077
crossref_primary_10_1109_TIP_2017_2716180
crossref_primary_10_1049_iet_cvi_2019_0017
crossref_primary_10_1109_TITS_2021_3073936
crossref_primary_10_1109_TIP_2017_2771408
crossref_primary_10_1049_iet_ipr_2018_6175
crossref_primary_10_3390_rs11222676
crossref_primary_10_1109_ACCESS_2017_2787666
crossref_primary_10_1016_j_neucom_2017_10_011
crossref_primary_10_1007_s11760_017_1136_1
crossref_primary_10_3390_jimaging4100117
crossref_primary_10_1109_ACCESS_2020_3044946
crossref_primary_10_1016_j_compmedimag_2017_01_007
crossref_primary_10_1016_j_neucom_2017_01_082
crossref_primary_10_1002_cpe_5120
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1016_j_patcog_2016_11_001
crossref_primary_10_1117_1_JRS_16_036514
crossref_primary_10_1109_TIP_2018_2865885
crossref_primary_10_3233_JIFS_179723
crossref_primary_10_1109_JIOT_2020_3031390
crossref_primary_10_1016_j_compeleceng_2022_108342
crossref_primary_10_1007_s11042_017_4569_1
crossref_primary_10_1007_s11042_018_5655_8
crossref_primary_10_1007_s10489_023_05026_0
crossref_primary_10_1109_TPAMI_2020_3033994
crossref_primary_10_1049_iet_ipr_2018_5263
crossref_primary_10_1016_j_ins_2016_03_014
crossref_primary_10_3233_JIFS_179971
crossref_primary_10_1007_s11042_017_5542_8
crossref_primary_10_1016_j_patcog_2016_09_028
crossref_primary_10_1109_TIFS_2018_2849883
crossref_primary_10_1186_s13640_018_0252_3
crossref_primary_10_1109_TIP_2016_2545249
crossref_primary_10_1109_ACCESS_2018_2862159
crossref_primary_10_1109_TNNLS_2020_3041636
crossref_primary_10_1049_ipr2_12155
crossref_primary_10_1109_JIOT_2021_3080084
crossref_primary_10_1145_3015463
crossref_primary_10_1109_LSP_2015_2438024
crossref_primary_10_1016_j_knosys_2018_09_014
crossref_primary_10_1109_TCSVT_2017_2722232
crossref_primary_10_1007_s11280_016_0405_1
crossref_primary_10_1016_j_neunet_2017_06_013
crossref_primary_10_1007_s11042_016_4180_x
crossref_primary_10_1016_j_knosys_2018_02_027
crossref_primary_10_1109_TPAMI_2019_2893953
crossref_primary_10_1109_TPAMI_2017_2757923
crossref_primary_10_1109_TNSRE_2022_3204533
crossref_primary_10_1016_j_patcog_2016_10_030
crossref_primary_10_1016_j_neucom_2016_11_079
crossref_primary_10_1007_s11554_018_0777_9
crossref_primary_10_1016_j_jvcir_2017_04_007
crossref_primary_10_1016_j_neunet_2019_07_013
crossref_primary_10_1007_s11042_018_7007_0
crossref_primary_10_1109_JIOT_2020_2966792
crossref_primary_10_1016_j_patcog_2017_03_013
crossref_primary_10_1109_TIP_2017_2675206
crossref_primary_10_1016_j_patcog_2017_03_010
crossref_primary_10_1016_j_ins_2020_02_022
crossref_primary_10_1049_iet_bmt_2019_0121
crossref_primary_10_1109_TIP_2020_3004246
crossref_primary_10_1016_j_artmed_2017_03_006
crossref_primary_10_1109_TNNLS_2022_3212703
crossref_primary_10_1109_TIP_2016_2539502
crossref_primary_10_1109_LSP_2018_2823683
crossref_primary_10_1109_TCYB_2016_2521428
crossref_primary_10_1109_TNNLS_2019_2899073
crossref_primary_10_1109_ACCESS_2021_3117736
crossref_primary_10_3390_s17102242
crossref_primary_10_1016_j_neucom_2022_02_035
crossref_primary_10_1007_s13042_020_01110_w
crossref_primary_10_1109_TCYB_2019_2903205
Cites_doi 10.1137/050626090
10.1109/TPAMI.2007.250598
10.1049/el:20062035
10.1016/j.imavis.2009.08.002
10.1137/080738970
10.1109/CVPR.2003.1211332
10.1109/LSP.2012.2207112
10.1109/TPAMI.2002.1008384
10.1109/TPAMI.2003.1177153
10.1109/CVPR.2010.5540018
10.1109/TIT.2008.929958
10.1109/TIP.2013.2268976
10.1109/CVPR.2010.5539964
10.1109/TPAMI.2007.70708
10.1109/TPAMI.2013.38
10.1109/TPAMI.2012.30
10.1162/jocn.1991.3.1.71
10.1109/TPAMI.2005.33
10.1109/CVPR.2011.5995313
10.1109/TPAMI.2008.258
10.1109/72.750575
10.1109/TIP.2012.2235849
10.1109/TPAMI.2010.220
10.1109/MSP.2010.939537
10.1109/34.879790
10.1109/TPAMI.2005.92
10.1109/TIP.2007.911828
10.1109/JPROC.2010.2044470
10.1109/TIP.2013.2264677
10.1109/TIP.2014.2310123
10.1002/cpa.20124
10.1109/TPAMI.2008.79
10.1109/TPAMI.2005.55
10.1109/TPAMI.2002.1114855
10.1109/CVPR.2013.93
10.1109/ICCV.2011.6126286
10.1109/TIP.2006.881969
10.1109/TPAMI.2011.282
10.1109/TPAMI.2010.128
10.1109/TPAMI.2011.112
10.1109/CVPR.2013.58
10.1109/CVPR.2008.4587652
10.1109/TSP.2006.881199
10.1109/MSP.2010.939041
10.1109/34.598228
10.1002/cpa.20132
10.1109/CVPR.2011.5995354
10.1109/CVPR.2010.5539934
10.1109/ICCV.2011.6126277
10.1007/s00138-007-0103-1
10.1109/TPAMI.2012.88
10.1109/CVPR.2011.5995556
10.1109/CVPR.1998.698702
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2014.2359453
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1079
ExternalDocumentID 3759032181
26353329
10_1109_TPAMI_2014_2359453
6905839
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-760fafac3cc3aa485dbd9252188f731454480bdc6e91c9a41e8daa7946b680bf3
IEDL.DBID RIE
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352533000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:20:40 EDT 2025
Mon Jun 30 02:18:55 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Sat Nov 29 05:15:56 EST 2025
Tue Nov 18 21:39:53 EST 2025
Tue Aug 26 16:39:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords face recognition
low-rank matrix recovery
Sparse representation
dictionary learning
classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-760fafac3cc3aa485dbd9252188f731454480bdc6e91c9a41e8daa7946b680bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26353329
PQID 1699068621
PQPubID 85458
PageCount 13
ParticipantIDs ieee_primary_6905839
crossref_primary_10_1109_TPAMI_2014_2359453
crossref_citationtrail_10_1109_TPAMI_2014_2359453
proquest_miscellaneous_1711534573
proquest_journals_1699068621
pubmed_primary_26353329
PublicationCentury 2000
PublicationDate 2015-May-1
2015-5-1
2015-May
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
aharon (ref35) 2006; 54
ref58
ref14
ref53
ref11
ref10
chen (ref42) 0
ref17
ref16
ref19
ref18
(ref55) 0
ref51
ref50
ref46
ref45
ref47
ref44
ref49
he (ref25) 2011; 33
ref8
ref7
ref9
ref4
ref3
ref6
(ref41) 2011; 58
ref5
ref40
yang (ref22) 0
mairal (ref38) 0
ref34
ref37
ref36
ref31
ref30
ref33
ref32
barsi (ref48) 2003; 25
ref2
ref1
ma (ref43) 0
ref39
lin (ref54) 0
ref24
ref23
ref26
ref64
ref63
bertsekas (ref52) 1996
ref65
ref21
ref28
ref27
martinez (ref59) 1998
ref29
ref60
ref62
zhao (ref20) 2006
ref61
References_xml – ident: ref53
  doi: 10.1137/050626090
– ident: ref8
  doi: 10.1109/TPAMI.2007.250598
– ident: ref6
  doi: 10.1049/el:20062035
– ident: ref57
  doi: 10.1016/j.imavis.2009.08.002
– ident: ref56
  doi: 10.1137/080738970
– ident: ref14
  doi: 10.1109/CVPR.2003.1211332
– ident: ref26
  doi: 10.1109/LSP.2012.2207112
– year: 0
  ident: ref38
  article-title: Supervised dictionary learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/TPAMI.2002.1008384
– year: 0
  ident: ref55
– year: 0
  ident: ref43
  article-title: Sparse representation for face recognition based on discriminative low-rank dictionary learning
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 25
  start-page: 218
  year: 2003
  ident: ref48
  article-title: Lambertian reflection and linear subspaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1177153
– ident: ref24
  doi: 10.1109/CVPR.2010.5540018
– ident: ref49
  doi: 10.1109/TIT.2008.929958
– start-page: 2541
  year: 2006
  ident: ref20
  article-title: On model selection consistency of lasso
  publication-title: J Mach Learn Res
– ident: ref63
  doi: 10.1109/TIP.2013.2268976
– year: 0
  ident: ref42
  article-title: Low-rank matrix recovery with structural incoherence for robust face recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 448
  year: 0
  ident: ref22
  article-title: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary
  publication-title: Proc Eur Conf Comput Vis
– ident: ref36
  doi: 10.1109/CVPR.2010.5539964
– ident: ref4
  doi: 10.1109/TPAMI.2007.70708
– ident: ref61
  doi: 10.1109/TPAMI.2013.38
– ident: ref46
  doi: 10.1109/TPAMI.2012.30
– ident: ref1
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref10
  doi: 10.1109/TPAMI.2005.33
– ident: ref33
  doi: 10.1109/CVPR.2011.5995313
– ident: ref2
  doi: 10.1109/TPAMI.2008.258
– ident: ref12
  doi: 10.1109/72.750575
– ident: ref28
  doi: 10.1109/TIP.2012.2235849
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref25
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– ident: ref34
  doi: 10.1109/MSP.2010.939537
– ident: ref60
  doi: 10.1109/34.879790
– ident: ref58
  doi: 10.1109/TPAMI.2005.92
– ident: ref51
  doi: 10.1109/TIP.2007.911828
– ident: ref29
  doi: 10.1109/JPROC.2010.2044470
– ident: ref62
  doi: 10.1109/TIP.2013.2264677
– ident: ref64
  doi: 10.1109/TIP.2014.2310123
– ident: ref19
  doi: 10.1002/cpa.20124
– ident: ref21
  doi: 10.1109/TPAMI.2008.79
– year: 1998
  ident: ref59
  article-title: The AR face database
– ident: ref7
  doi: 10.1109/TPAMI.2005.55
– ident: ref13
  doi: 10.1109/TPAMI.2002.1114855
– ident: ref44
  doi: 10.1109/CVPR.2013.93
– year: 0
  ident: ref54
  article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref40
  doi: 10.1109/ICCV.2011.6126286
– ident: ref50
  doi: 10.1109/TIP.2006.881969
– ident: ref65
  doi: 10.1109/TPAMI.2011.282
– ident: ref17
  doi: 10.1109/TPAMI.2010.128
– ident: ref27
  doi: 10.1109/TPAMI.2011.112
– ident: ref47
  doi: 10.1109/CVPR.2013.58
– ident: ref37
  doi: 10.1109/CVPR.2008.4587652
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref35
  article-title: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref30
  doi: 10.1109/CVPR.2010.5540018
– ident: ref11
  doi: 10.1109/MSP.2010.939041
– ident: ref3
  doi: 10.1109/34.598228
– ident: ref18
  doi: 10.1002/cpa.20132
– ident: ref39
  doi: 10.1109/CVPR.2011.5995354
– ident: ref23
  doi: 10.1109/CVPR.2010.5539934
– volume: 58
  year: 2011
  ident: ref41
  publication-title: J ACM
– ident: ref32
  doi: 10.1109/ICCV.2011.6126277
– ident: ref9
  doi: 10.1007/s00138-007-0103-1
– ident: ref45
  doi: 10.1109/TPAMI.2012.88
– ident: ref31
  doi: 10.1109/CVPR.2011.5995556
– ident: ref16
  doi: 10.1109/CVPR.1998.698702
– year: 1996
  ident: ref52
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– ident: ref15
  doi: 10.1109/TPAMI.2005.92
SSID ssj0014503
Score 2.532165
Snippet Sparse representation provides an effective tool for classification under the conditions that every class has sufficient representative training samples and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1067
SubjectTerms Algorithms
Biometric Identification - methods
Databases, Factual
Dictionaries
Face
Face - anatomy & histology
Face recognition
Feature extraction
Humans
Image Processing, Computer-Assisted - methods
Sparse matrices
Training
Training data
Vectors
Title Sparse and Dense Hybrid Representation via Dictionary Decomposition for Face Recognition
URI https://ieeexplore.ieee.org/document/6905839
https://www.ncbi.nlm.nih.gov/pubmed/26353329
https://www.proquest.com/docview/1699068621
https://www.proquest.com/docview/1711534573
Volume 37
WOSCitedRecordID wos000352533000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB1fW1vojgTatt0zbNUdRFQRfxAXsraZLCgnSXfcH-eydpWj2o4K2QaRoyM8w3nRfAWcgTxRQqEgsT5SEiDrw8TSNPJAbPaQS4ue0z-8h6vbTf589LcNHUwmitbfKZvjSPNpavhnJmfpVdoScXo0FfhmXGWFWr1UQMothOQUYEgxqObkRdIOPzq7fn66cHk8UVXYY05lFshueYJiyUWmT5ZY_sgJXfsaa1Od3W_067CRsOW5LrShi2YEmXbWjVcxuIU-M2rH9rQrgN_dcROreaiFKRW3RqNblfmDIu8mKTZF1tUknmA0FuB7YMQowXSGqy0V3KF0HoS7pCavJSJyQNyx1479693dx7bt6CJ2kcTD2W-IUohKRSUiGiNFa54iHa9zQtGMUbRlfOz5VMNA8kF1GgUyWE6VCfJ7hQ0F1YKYel3geCMKIIQ-nTHM2fChSXhXGGuaRmJGARdCCobz2Trhm5mYnxkVmnxOeZZVpmmJY5pnXgvHlnVLXi-JN627CkoXTc6MBRzdzMaeskCxK0yaZUBs912iyjnpngiSj1cIY0DLEzjWKGO-9VQtHsXcvSwc_fPIQ1PFlcpUkewcp0PNPHsCrn08FkfILC3E9PrDB_ApdM7EY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQR7YLAN1jHASLxB1ji2k_hxYlStaKtpFKlvkWM7UiWUVv2S9t_v7DiBB0DiLZIvjuW70_0u9wXwMZGpyQwqUpakJkJETKMyz3mkUofnLALc0veZHWfTaT6fy9sD-NzVwlhrffKZvXKPPpZvlnrnfpX10ZMTaNAfwWPBeUKbaq0uZsCFn4OMGAZ1HB2JtkQmlv3Z7fVk5PK4-FXChOTCjc9xbVgY89jyl0XyI1b-jja91Rkc_995X8DzgC7JdSMOL-HA1idw3E5uIEGRT-DotzaEpzD_vkL31hJVG3KDbq0lw3tXyEXufJpsqE6qyX6hyM3CF0Ko9T2Sunz0kPRFEPySgdKW3LUpScv6DH4Mvs6-DKMwcSHSTNBtlKVxpSqlmdZMKZ4LUxqZoIXP8ypjeMPozMWl0amVVEvFqc2NUq5HfZniQsVewWG9rO05EAQSVZLomJVoAA01UlfOHZaauaGAFe0BbW-90KEduZuK8bPwbkksC8-0wjGtCEzrwafunVXTjOOf1KeOJR1l4EYPLlvmFkFfNwVN0Sq7Yhk814duGTXNhU9UbZc7pMkQPTMuMtz5dSMU3d6tLF38-Zvv4elwNhkX49H02xt4hqcUTdLkJRxu1zv7Fp7o_XaxWb_zIv0AdSfupQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+and+Dense+Hybrid+Representation+via+Dictionary+Decomposition+for+Face+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Jiang%2C+Xudong&rft.au=Lai%2C+Jian&rft.date=2015-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=37&rft.issue=5&rft.spage=1067&rft_id=info:doi/10.1109%2FTPAMI.2014.2359453&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3759032181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon