A Hybrid Learning Method for Constructing Compact Rule-Based Fuzzy Models

The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 43; číslo 6; s. 1807 - 1821
Hlavní autori: Wanqing Zhao, Qun Niu, Kang Li, Irwin, George W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
AbstractList The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Author Kang Li
Qun Niu
Wanqing Zhao
Irwin, George W.
Author_xml – sequence: 1
  surname: Wanqing Zhao
  fullname: Wanqing Zhao
  email: wzhao02@qub.ac.uk
  organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK
– sequence: 2
  surname: Qun Niu
  fullname: Qun Niu
  email: comelycc@gmail.com
  organization: Sch. of Mechatron. & Autom., Shanghai Univ., Shanghai, China
– sequence: 3
  surname: Kang Li
  fullname: Kang Li
  email: k.li@qub.ac.uk
  organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK
– sequence: 4
  givenname: George W.
  surname: Irwin
  fullname: Irwin, George W.
  email: G.Irwin@qub.ac.uk
  organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23757574$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMovv-AghTcuOmYV5tk6RRfMIPgYx0y6a1WOs2YpIvx15txRhcuzF0kHL5zCPccoO3e9YDQCcEjQrC6fH6aVuMRxYSOKGUEl3IL7VNSypxSUWz_vkuxh45DeMfpyCQpuYv2KBNFGr6P7q-yu-XMt3U2AeP7tn_NphDfXJ01zmeV60P0g40rvXLzhbExexw6yMcmQJ3dDJ-fy2zqaujCEdppTBfgeHMfopeb6-fqLp883N5XV5PcsoLEXFABBFvL6kaJRkpWKkGkFIISUDWxrJmxkpPCSKaSzGpTMNJQq7BgtJkpdogu1rkL7z4GCFHP22Ch60wPbgiaFJjzIiUUCT3_g767wffpd5rwEnNacsUSdbahhtkcar3w7dz4pf5ZUgLkGrDeheCh0baNJrauj960nSZYryrR35XoVSV6U0my0j_Wn_R_TadrUwsAv4aSY8U5Zl8McpM4
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3483817
crossref_primary_10_1109_TCYB_2017_2762521
crossref_primary_10_1109_TCYB_2014_2320910
crossref_primary_10_1109_TFUZZ_2018_2878156
crossref_primary_10_3390_a10030099
crossref_primary_10_1109_TSMC_2015_2461188
crossref_primary_10_1109_TCYB_2018_2834356
crossref_primary_10_1109_TETCI_2018_2868253
crossref_primary_10_1080_00207721_2016_1239140
crossref_primary_10_1109_TSMC_2023_3320680
crossref_primary_10_1109_TCYB_2016_2638861
crossref_primary_10_1007_s00521_020_05133_w
crossref_primary_10_1109_TCYB_2015_2447574
crossref_primary_10_1016_j_asoc_2016_05_004
Cites_doi 10.1109/TSMCB.2007.897922
10.1109/TEVC.2004.826071
10.1016/j.automatica.2010.10.029
10.1109/TSMCC.2008.2002333
10.1002/(SICI)1098-111X(199911)14:11<1123::AID-INT4>3.0.CO;2-6
10.1109/3477.809036
10.1109/GEFS.2008.4484559
10.1016/j.fss.2005.04.009
10.1016/S0925-2312(00)00346-5
10.1109/TKDE.2008.208
10.1002/int.20232
10.1109/TPWRS.2010.2076839
10.1016/S0165-0114(96)00098-X
10.1016/j.neucom.2008.10.002
10.1109/TFUZZ.2009.2034529
10.1109/TCST.2009.2026397
10.1504/IJMIC.2009.029261
10.1109/4235.873236
10.1109/TAC.2005.852557
10.1109/TSMCB.2003.818557
10.1109/91.660805
10.1016/S0165-0114(98)00169-9
10.1109/TFUZZ.2008.928597
10.1109/TFUZZ.2008.2005935
10.1016/j.fss.2008.05.016
10.1016/0165-0114(95)00322-3
10.1109/TEVC.2005.859468
10.1016/j.eswa.2009.11.020
10.1016/j.ijar.2006.01.004
10.1016/j.eswa.2011.04.145
10.1109/3477.740162
10.1109/FUZZY.2007.4295633
10.3233/IFS-1994-2306
10.1109/TSMCB.2011.2171946
10.1109/91.995117
10.1016/0165-0114(95)00196-4
10.1109/TSMCB.2003.817089
10.1109/TFUZZ.2010.2047949
10.1016/S1568-4946(02)00032-7
10.1016/j.ins.2007.03.021
10.1109/TSMCB.2008.2005124
10.1109/TFUZZ.2012.2201338
10.1109/21.199466
10.1109/INES.2007.4283680
10.1109/TFUZZ.2009.2038150
10.1109/FUZZY.2007.4295571
10.1109/ISSPIT.2009.5407590
10.1109/91.413232
10.1049/iet-gtd.2009.0611
10.1016/j.jfranklin.2010.10.004
10.1109/21.256541
10.1109/TEVC.2004.826069
10.1109/TAC.2006.886541
10.1109/TSMCB.2010.2046035
10.1177/003754970107600201
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TSMCB.2012.2231068
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1821
ExternalDocumentID 3133720511
23757574
10_1109_TSMCB_2012_2231068
6409440
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-727e10cc3df97f8836971887721e9d1c3fb36415a8398873da531f2c90732fb93
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327647500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 14:20:22 EDT 2025
Sun Sep 07 03:47:28 EDT 2025
Mon Jul 21 06:03:45 EDT 2025
Sat Nov 29 06:48:27 EST 2025
Tue Nov 18 22:32:10 EST 2025
Tue Aug 26 16:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-727e10cc3df97f8836971887721e9d1c3fb36415a8398873da531f2c90732fb93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23757574
PQID 1460426493
PQPubID 85422
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSMCB_2012_2231068
crossref_primary_10_1109_TSMCB_2012_2231068
ieee_primary_6409440
proquest_miscellaneous_1504454155
proquest_journals_1460426493
pubmed_primary_23757574
PublicationCentury 2000
PublicationDate 2013-Dec.
2013-12-00
2013-Dec
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
chiu (ref12) 1994; 2
ref17
ref16
ref19
lin (ref24) 2007; 23
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
alcal -fdez (ref50) 2011; 17
ref20
ref22
ref21
ref28
ref27
ref29
jin (ref49) 1999; 29
References_xml – ident: ref53
  doi: 10.1109/TSMCB.2007.897922
– ident: ref51
  doi: 10.1109/TEVC.2004.826071
– ident: ref2
  doi: 10.1016/j.automatica.2010.10.029
– ident: ref32
  doi: 10.1109/TSMCC.2008.2002333
– ident: ref25
  doi: 10.1002/(SICI)1098-111X(199911)14:11<1123::AID-INT4>3.0.CO;2-6
– volume: 29
  start-page: 829
  year: 1999
  ident: ref49
  article-title: On generating <tex Notation="TeX">$\hbox{FC}^{3}$</tex> fuzzy rule systems from data using evolution strategies
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.809036
– ident: ref6
  doi: 10.1109/GEFS.2008.4484559
– ident: ref46
  doi: 10.1016/j.fss.2005.04.009
– ident: ref16
  doi: 10.1016/S0925-2312(00)00346-5
– ident: ref7
  doi: 10.1109/TKDE.2008.208
– ident: ref26
  doi: 10.1002/int.20232
– ident: ref42
  doi: 10.1109/TPWRS.2010.2076839
– ident: ref21
  doi: 10.1016/S0165-0114(96)00098-X
– ident: ref33
  doi: 10.1016/j.neucom.2008.10.002
– ident: ref30
  doi: 10.1109/TFUZZ.2009.2034529
– ident: ref5
  doi: 10.1109/TCST.2009.2026397
– ident: ref38
  doi: 10.1504/IJMIC.2009.029261
– ident: ref57
  doi: 10.1109/4235.873236
– ident: ref34
  doi: 10.1109/TAC.2005.852557
– ident: ref52
  doi: 10.1109/TSMCB.2003.818557
– ident: ref15
  doi: 10.1109/91.660805
– ident: ref54
  doi: 10.1016/S0165-0114(98)00169-9
– ident: ref8
  doi: 10.1109/TFUZZ.2008.928597
– ident: ref31
  doi: 10.1109/TFUZZ.2008.2005935
– ident: ref1
  doi: 10.1016/j.fss.2008.05.016
– ident: ref55
  doi: 10.1016/0165-0114(95)00322-3
– ident: ref28
  doi: 10.1109/TEVC.2005.859468
– ident: ref11
  doi: 10.1016/j.eswa.2009.11.020
– ident: ref22
  doi: 10.1016/j.ijar.2006.01.004
– ident: ref44
  doi: 10.1016/j.eswa.2011.04.145
– volume: 17
  start-page: 255
  year: 2011
  ident: ref50
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J Multi-Valued Logic Soft Comput
– ident: ref18
  doi: 10.1109/3477.740162
– ident: ref35
  doi: 10.1109/FUZZY.2007.4295633
– volume: 2
  start-page: 267
  year: 1994
  ident: ref12
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-1994-2306
– ident: ref27
  doi: 10.1109/TSMCB.2011.2171946
– ident: ref13
  doi: 10.1109/91.995117
– volume: 23
  start-page: 463
  year: 2007
  ident: ref24
  article-title: Design of neuro-fuzzy systems using a hybrid evolutionary learning algorithm
  publication-title: J Inf Sci Eng
– ident: ref23
  doi: 10.1016/0165-0114(95)00196-4
– ident: ref17
  doi: 10.1109/TSMCB.2003.817089
– ident: ref3
  doi: 10.1109/TFUZZ.2010.2047949
– ident: ref56
  doi: 10.1016/S1568-4946(02)00032-7
– ident: ref10
  doi: 10.1016/j.ins.2007.03.021
– ident: ref4
  doi: 10.1109/TSMCB.2008.2005124
– ident: ref9
  doi: 10.1109/TFUZZ.2012.2201338
– ident: ref14
  doi: 10.1109/21.199466
– ident: ref19
  doi: 10.1109/INES.2007.4283680
– ident: ref37
  doi: 10.1109/TFUZZ.2009.2038150
– ident: ref43
  doi: 10.1109/FUZZY.2007.4295571
– ident: ref47
  doi: 10.1109/ISSPIT.2009.5407590
– ident: ref20
  doi: 10.1109/91.413232
– ident: ref41
  doi: 10.1049/iet-gtd.2009.0611
– ident: ref45
  doi: 10.1016/j.jfranklin.2010.10.004
– ident: ref36
  doi: 10.1109/21.256541
– ident: ref29
  doi: 10.1109/TEVC.2004.826069
– ident: ref48
  doi: 10.1109/TAC.2006.886541
– ident: ref40
  doi: 10.1109/TSMCB.2010.2046035
– ident: ref39
  doi: 10.1177/003754970107600201
SSID ssj0000816898
Score 2.0754235
Snippet The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model...
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1807
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Compact rule-based systems
Computer Simulation
Decision Support Techniques
fast recursive algorithm (FRA)
Fuzzy Logic
fuzzy rules
Fuzzy sets
fuzzy structure
Fuzzy systems
harmony search (HS)
Learning systems
Models, Statistical
Optimization
Pattern Recognition, Automated - methods
Polynomials
Teaching methods
Vectors
Title A Hybrid Learning Method for Constructing Compact Rule-Based Fuzzy Models
URI https://ieeexplore.ieee.org/document/6409440
https://www.ncbi.nlm.nih.gov/pubmed/23757574
https://www.proquest.com/docview/1460426493
https://www.proquest.com/docview/1504454155
Volume 43
WOSCitedRecordID wos000327647500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5UfOiLVq26rZUUfGipq7tJLtk8qnjYhzuktXBvyyabFeG4E-9O0L--M9ncgqAF30I2-4PMZOebZGY-gCNfaKssl2nF0TeR1uappaBxxavGWp47VTSBbEIPh8VoZK5X4LjLhfHeh-Azf0LNcJZfT92CtspOFTkjEh30Va1Vm6vV7acEAolAfcuxkSKq0Mscmcyc3vwZXJxTIBc_4YRoFPH0caERrGj5wiQFjpW34WYwO_3N933wR9iI8JKdtfqwBSt-sg1bcQHP2PdYZfrHDvw6Y1dPlK7FYonVWzYIbNIMYSwjHs-2siz2h3-Gm7Pfi7FPz9Hs1ay_eH5-YkSkNp59gr_9y5uLqzTyKqRO9PJ5ipDF55lzom6MbopCKIMWqkCcnXtT5040Vig07BWCJ-wWdYULteEO_WjBG2vELqxNphO_D6zmyqMsKtNrFB352kzW0qCwva5y77IE8uXUli4WHSfui3EZnI_MlEEyJUmmjJJJ4Gd3z31bcuO_o3do3ruRccoTOFhKsIyrckZuDrmM0ogEvnWXcT3RIUk18dMFjullUvYIZiWw10q-e_ZSYT6__s4v8IETWUYIdjmANRST_wrr7nF-N3s4RKUdFYdBaf8B-ivhkA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5KLdSXam3V1aoR-qC02-4m2WTz2JYeV-wdolfo27LJZkU47op3J7R_vTPZ3IKggm8hm_1BJrPzTTIzH8ChL7VVlsu05uibSGvz1FLQuOJ1ay3PnSrbQDahx-Py9tZ83oDjPhfGex-Cz_wJNcNZfjN3K9oqO1XkjEh00B8VUvKsy9bqd1QChUQgv-XYSBFX6HWWTGZOJ19HF-cUysVPOGEaRUx9XGiEK1r-ZpQCy8rfAWcwPIMn__fJT2EnAkx21q2IXdjws2ewG1V4wT7EOtMf9-DqjA3vKWGLxSKr39go8EkzBLKMmDy72rLYH_4absm-rKY-PUfD17DB6uHhnhGV2nSxDzeDy8nFMI3MCqkTRb5MEbT4PHNONK3RbVkKZdBGlYi0c2-a3InWCoWmvUb4hN2iqVFVW-7Qkxa8tUY8h83ZfOZfAmu48lqr2hStokNfm8lGGhS313XuXZZAvp7aysWy48R-Ma2C-5GZKkimIslUUTIJHPX33HVFN_45eo_mvR8ZpzyBg7UEq6iXC3J0yGmURiTwvr-MGkXHJPXMz1c4psikLAhoJfCik3z_7PWCefXnd76D7eFkdF1dX40_vYbHnKgzQujLAWyiyPwb2HI_l98XP96GpfsLkOLj7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+learning+method+for+constructing+compact+rule-based+fuzzy+models&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Wanqing&rft.au=Niu%2C+Qun&rft.au=Li%2C+Kang&rft.au=Irwin%2C+George+W&rft.date=2013-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=43&rft.issue=6&rft.spage=1807&rft_id=info:doi/10.1109%2FTSMCB.2012.2231068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon