A Hybrid Learning Method for Constructing Compact Rule-Based Fuzzy Models
The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 43; číslo 6; s. 1807 - 1821 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature. |
|---|---|
| AbstractList | The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature. The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature. |
| Author | Kang Li Qun Niu Wanqing Zhao Irwin, George W. |
| Author_xml | – sequence: 1 surname: Wanqing Zhao fullname: Wanqing Zhao email: wzhao02@qub.ac.uk organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK – sequence: 2 surname: Qun Niu fullname: Qun Niu email: comelycc@gmail.com organization: Sch. of Mechatron. & Autom., Shanghai Univ., Shanghai, China – sequence: 3 surname: Kang Li fullname: Kang Li email: k.li@qub.ac.uk organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK – sequence: 4 givenname: George W. surname: Irwin fullname: Irwin, George W. email: G.Irwin@qub.ac.uk organization: Sch. of Electron., Electr. Eng. & Comput. Sci., Queen's Univ. Belfast, Belfast, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23757574$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLxDAUhYMovv-AghTcuOmYV5tk6RRfMIPgYx0y6a1WOs2YpIvx15txRhcuzF0kHL5zCPccoO3e9YDQCcEjQrC6fH6aVuMRxYSOKGUEl3IL7VNSypxSUWz_vkuxh45DeMfpyCQpuYv2KBNFGr6P7q-yu-XMt3U2AeP7tn_NphDfXJ01zmeV60P0g40rvXLzhbExexw6yMcmQJ3dDJ-fy2zqaujCEdppTBfgeHMfopeb6-fqLp883N5XV5PcsoLEXFABBFvL6kaJRkpWKkGkFIISUDWxrJmxkpPCSKaSzGpTMNJQq7BgtJkpdogu1rkL7z4GCFHP22Ch60wPbgiaFJjzIiUUCT3_g767wffpd5rwEnNacsUSdbahhtkcar3w7dz4pf5ZUgLkGrDeheCh0baNJrauj960nSZYryrR35XoVSV6U0my0j_Wn_R_TadrUwsAv4aSY8U5Zl8McpM4 |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TFUZZ_2024_3483817 crossref_primary_10_1109_TCYB_2017_2762521 crossref_primary_10_1109_TCYB_2014_2320910 crossref_primary_10_1109_TFUZZ_2018_2878156 crossref_primary_10_3390_a10030099 crossref_primary_10_1109_TSMC_2015_2461188 crossref_primary_10_1109_TCYB_2018_2834356 crossref_primary_10_1109_TETCI_2018_2868253 crossref_primary_10_1080_00207721_2016_1239140 crossref_primary_10_1109_TSMC_2023_3320680 crossref_primary_10_1109_TCYB_2016_2638861 crossref_primary_10_1007_s00521_020_05133_w crossref_primary_10_1109_TCYB_2015_2447574 crossref_primary_10_1016_j_asoc_2016_05_004 |
| Cites_doi | 10.1109/TSMCB.2007.897922 10.1109/TEVC.2004.826071 10.1016/j.automatica.2010.10.029 10.1109/TSMCC.2008.2002333 10.1002/(SICI)1098-111X(199911)14:11<1123::AID-INT4>3.0.CO;2-6 10.1109/3477.809036 10.1109/GEFS.2008.4484559 10.1016/j.fss.2005.04.009 10.1016/S0925-2312(00)00346-5 10.1109/TKDE.2008.208 10.1002/int.20232 10.1109/TPWRS.2010.2076839 10.1016/S0165-0114(96)00098-X 10.1016/j.neucom.2008.10.002 10.1109/TFUZZ.2009.2034529 10.1109/TCST.2009.2026397 10.1504/IJMIC.2009.029261 10.1109/4235.873236 10.1109/TAC.2005.852557 10.1109/TSMCB.2003.818557 10.1109/91.660805 10.1016/S0165-0114(98)00169-9 10.1109/TFUZZ.2008.928597 10.1109/TFUZZ.2008.2005935 10.1016/j.fss.2008.05.016 10.1016/0165-0114(95)00322-3 10.1109/TEVC.2005.859468 10.1016/j.eswa.2009.11.020 10.1016/j.ijar.2006.01.004 10.1016/j.eswa.2011.04.145 10.1109/3477.740162 10.1109/FUZZY.2007.4295633 10.3233/IFS-1994-2306 10.1109/TSMCB.2011.2171946 10.1109/91.995117 10.1016/0165-0114(95)00196-4 10.1109/TSMCB.2003.817089 10.1109/TFUZZ.2010.2047949 10.1016/S1568-4946(02)00032-7 10.1016/j.ins.2007.03.021 10.1109/TSMCB.2008.2005124 10.1109/TFUZZ.2012.2201338 10.1109/21.199466 10.1109/INES.2007.4283680 10.1109/TFUZZ.2009.2038150 10.1109/FUZZY.2007.4295571 10.1109/ISSPIT.2009.5407590 10.1109/91.413232 10.1049/iet-gtd.2009.0611 10.1016/j.jfranklin.2010.10.004 10.1109/21.256541 10.1109/TEVC.2004.826069 10.1109/TAC.2006.886541 10.1109/TSMCB.2010.2046035 10.1177/003754970107600201 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TSMCB.2012.2231068 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1821 |
| ExternalDocumentID | 3133720511 23757574 10_1109_TSMCB_2012_2231068 6409440 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-727e10cc3df97f8836971887721e9d1c3fb36415a8398873da531f2c90732fb93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327647500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Wed Oct 01 14:20:22 EDT 2025 Sun Sep 07 03:47:28 EDT 2025 Mon Jul 21 06:03:45 EDT 2025 Sat Nov 29 06:48:27 EST 2025 Tue Nov 18 22:32:10 EST 2025 Tue Aug 26 16:43:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-727e10cc3df97f8836971887721e9d1c3fb36415a8398873da531f2c90732fb93 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23757574 |
| PQID | 1460426493 |
| PQPubID | 85422 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSMCB_2012_2231068 crossref_primary_10_1109_TSMCB_2012_2231068 ieee_primary_6409440 proquest_miscellaneous_1504454155 proquest_journals_1460426493 pubmed_primary_23757574 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Dec. 2013-12-00 2013-Dec 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2013 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 chiu (ref12) 1994; 2 ref17 ref16 ref19 lin (ref24) 2007; 23 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 alcal -fdez (ref50) 2011; 17 ref20 ref22 ref21 ref28 ref27 ref29 jin (ref49) 1999; 29 |
| References_xml | – ident: ref53 doi: 10.1109/TSMCB.2007.897922 – ident: ref51 doi: 10.1109/TEVC.2004.826071 – ident: ref2 doi: 10.1016/j.automatica.2010.10.029 – ident: ref32 doi: 10.1109/TSMCC.2008.2002333 – ident: ref25 doi: 10.1002/(SICI)1098-111X(199911)14:11<1123::AID-INT4>3.0.CO;2-6 – volume: 29 start-page: 829 year: 1999 ident: ref49 article-title: On generating <tex Notation="TeX">$\hbox{FC}^{3}$</tex> fuzzy rule systems from data using evolution strategies publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.809036 – ident: ref6 doi: 10.1109/GEFS.2008.4484559 – ident: ref46 doi: 10.1016/j.fss.2005.04.009 – ident: ref16 doi: 10.1016/S0925-2312(00)00346-5 – ident: ref7 doi: 10.1109/TKDE.2008.208 – ident: ref26 doi: 10.1002/int.20232 – ident: ref42 doi: 10.1109/TPWRS.2010.2076839 – ident: ref21 doi: 10.1016/S0165-0114(96)00098-X – ident: ref33 doi: 10.1016/j.neucom.2008.10.002 – ident: ref30 doi: 10.1109/TFUZZ.2009.2034529 – ident: ref5 doi: 10.1109/TCST.2009.2026397 – ident: ref38 doi: 10.1504/IJMIC.2009.029261 – ident: ref57 doi: 10.1109/4235.873236 – ident: ref34 doi: 10.1109/TAC.2005.852557 – ident: ref52 doi: 10.1109/TSMCB.2003.818557 – ident: ref15 doi: 10.1109/91.660805 – ident: ref54 doi: 10.1016/S0165-0114(98)00169-9 – ident: ref8 doi: 10.1109/TFUZZ.2008.928597 – ident: ref31 doi: 10.1109/TFUZZ.2008.2005935 – ident: ref1 doi: 10.1016/j.fss.2008.05.016 – ident: ref55 doi: 10.1016/0165-0114(95)00322-3 – ident: ref28 doi: 10.1109/TEVC.2005.859468 – ident: ref11 doi: 10.1016/j.eswa.2009.11.020 – ident: ref22 doi: 10.1016/j.ijar.2006.01.004 – ident: ref44 doi: 10.1016/j.eswa.2011.04.145 – volume: 17 start-page: 255 year: 2011 ident: ref50 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J Multi-Valued Logic Soft Comput – ident: ref18 doi: 10.1109/3477.740162 – ident: ref35 doi: 10.1109/FUZZY.2007.4295633 – volume: 2 start-page: 267 year: 1994 ident: ref12 article-title: Fuzzy model identification based on cluster estimation publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-1994-2306 – ident: ref27 doi: 10.1109/TSMCB.2011.2171946 – ident: ref13 doi: 10.1109/91.995117 – volume: 23 start-page: 463 year: 2007 ident: ref24 article-title: Design of neuro-fuzzy systems using a hybrid evolutionary learning algorithm publication-title: J Inf Sci Eng – ident: ref23 doi: 10.1016/0165-0114(95)00196-4 – ident: ref17 doi: 10.1109/TSMCB.2003.817089 – ident: ref3 doi: 10.1109/TFUZZ.2010.2047949 – ident: ref56 doi: 10.1016/S1568-4946(02)00032-7 – ident: ref10 doi: 10.1016/j.ins.2007.03.021 – ident: ref4 doi: 10.1109/TSMCB.2008.2005124 – ident: ref9 doi: 10.1109/TFUZZ.2012.2201338 – ident: ref14 doi: 10.1109/21.199466 – ident: ref19 doi: 10.1109/INES.2007.4283680 – ident: ref37 doi: 10.1109/TFUZZ.2009.2038150 – ident: ref43 doi: 10.1109/FUZZY.2007.4295571 – ident: ref47 doi: 10.1109/ISSPIT.2009.5407590 – ident: ref20 doi: 10.1109/91.413232 – ident: ref41 doi: 10.1049/iet-gtd.2009.0611 – ident: ref45 doi: 10.1016/j.jfranklin.2010.10.004 – ident: ref36 doi: 10.1109/21.256541 – ident: ref29 doi: 10.1109/TEVC.2004.826069 – ident: ref48 doi: 10.1109/TAC.2006.886541 – ident: ref40 doi: 10.1109/TSMCB.2010.2046035 – ident: ref39 doi: 10.1177/003754970107600201 |
| SSID | ssj0000816898 |
| Score | 2.0754235 |
| Snippet | The Takagi-Sugeno-Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model... The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1807 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Compact rule-based systems Computer Simulation Decision Support Techniques fast recursive algorithm (FRA) Fuzzy Logic fuzzy rules Fuzzy sets fuzzy structure Fuzzy systems harmony search (HS) Learning systems Models, Statistical Optimization Pattern Recognition, Automated - methods Polynomials Teaching methods Vectors |
| Title | A Hybrid Learning Method for Constructing Compact Rule-Based Fuzzy Models |
| URI | https://ieeexplore.ieee.org/document/6409440 https://www.ncbi.nlm.nih.gov/pubmed/23757574 https://www.proquest.com/docview/1460426493 https://www.proquest.com/docview/1504454155 |
| Volume | 43 |
| WOSCitedRecordID | wos000327647500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5UfOiLVq26rZUUfGipq7tJLtk8qnjYhzuktXBvyyabFeG4E-9O0L--M9ncgqAF30I2-4PMZOebZGY-gCNfaKssl2nF0TeR1uappaBxxavGWp47VTSBbEIPh8VoZK5X4LjLhfHeh-Azf0LNcJZfT92CtspOFTkjEh30Va1Vm6vV7acEAolAfcuxkSKq0Mscmcyc3vwZXJxTIBc_4YRoFPH0caERrGj5wiQFjpW34WYwO_3N933wR9iI8JKdtfqwBSt-sg1bcQHP2PdYZfrHDvw6Y1dPlK7FYonVWzYIbNIMYSwjHs-2siz2h3-Gm7Pfi7FPz9Hs1ay_eH5-YkSkNp59gr_9y5uLqzTyKqRO9PJ5ipDF55lzom6MbopCKIMWqkCcnXtT5040Vig07BWCJ-wWdYULteEO_WjBG2vELqxNphO_D6zmyqMsKtNrFB352kzW0qCwva5y77IE8uXUli4WHSfui3EZnI_MlEEyJUmmjJJJ4Gd3z31bcuO_o3do3ruRccoTOFhKsIyrckZuDrmM0ogEvnWXcT3RIUk18dMFjullUvYIZiWw10q-e_ZSYT6__s4v8IETWUYIdjmANRST_wrr7nF-N3s4RKUdFYdBaf8B-ivhkA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5KLdSXam3V1aoR-qC02-4m2WTz2JYeV-wdolfo27LJZkU47op3J7R_vTPZ3IKggm8hm_1BJrPzTTIzH8ChL7VVlsu05uibSGvz1FLQuOJ1ay3PnSrbQDahx-Py9tZ83oDjPhfGex-Cz_wJNcNZfjN3K9oqO1XkjEh00B8VUvKsy9bqd1QChUQgv-XYSBFX6HWWTGZOJ19HF-cUysVPOGEaRUx9XGiEK1r-ZpQCy8rfAWcwPIMn__fJT2EnAkx21q2IXdjws2ewG1V4wT7EOtMf9-DqjA3vKWGLxSKr39go8EkzBLKMmDy72rLYH_4absm-rKY-PUfD17DB6uHhnhGV2nSxDzeDy8nFMI3MCqkTRb5MEbT4PHNONK3RbVkKZdBGlYi0c2-a3InWCoWmvUb4hN2iqVFVW-7Qkxa8tUY8h83ZfOZfAmu48lqr2hStokNfm8lGGhS313XuXZZAvp7aysWy48R-Ma2C-5GZKkimIslUUTIJHPX33HVFN_45eo_mvR8ZpzyBg7UEq6iXC3J0yGmURiTwvr-MGkXHJPXMz1c4psikLAhoJfCik3z_7PWCefXnd76D7eFkdF1dX40_vYbHnKgzQujLAWyiyPwb2HI_l98XP96GpfsLkOLj7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+learning+method+for+constructing+compact+rule-based+fuzzy+models&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Wanqing&rft.au=Niu%2C+Qun&rft.au=Li%2C+Kang&rft.au=Irwin%2C+George+W&rft.date=2013-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=43&rft.issue=6&rft.spage=1807&rft_id=info:doi/10.1109%2FTSMCB.2012.2231068&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |