Tree-width for first order formulae

We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 8, Issue 1
Hlavní autoři: Adler, Isolde, Weyer, Mark
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 01.01.2012
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost.
AbstractList We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost.
We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost.
Author Weyer, Mark
Adler, Isolde
Author_xml – sequence: 1
  givenname: Isolde
  surname: Adler
  fullname: Adler, Isolde
– sequence: 2
  givenname: Mark
  surname: Weyer
  fullname: Weyer, Mark
BookMark eNp1kE1LAzEQhoNUsNbePRa86GE1k2yyG29S_ChUPFjPYTadaMq2kWxE_Pd2rYIIzmU-4HkY3kM22MQNMXYM_FyAri_m99PHoj6FSynOBAexx4ZQa14oU5WDX_MBG3fdim9LSqiFHrKTRSIq3sMyv0x8TBMfUpcnMS0p9fv6rUU6Yvse247G333Enm6uF9O7Yv5wO5tezQsnFeRCk2zQENWIRlUSGiTpKnSlrggMd4RYKVKVL7ms0TTAlSFnhGqU4gK8HLHZzruMuLKvKawxfdiIwX4dYnq2mHJwLVlPWsumcQ5LWTplUCOAECWCIyM1bF1653Ipdl0ib13ImEPc5IShtcBtn5ztk7O1BSuF7ZPbgvwP-PPIv8gndNJxhw
CitedBy_id crossref_primary_10_1145_3073409
Cites_doi 10.1016/j.jctb.2006.12.006
10.1016/S0304-3975(99)00220-0
10.1145/1206035.1206036
10.1137/S0097539793251219
10.1137/S0097539794266766
10.1007/978-3-642-14279-6_7
10.1145/212433.212474
10.1007/978-1-4612-0515-9
10.1145/800105.803397
10.1145/1376916.1376959
10.1007/3-540-46135-3_21
10.1007/11538363_17
10.1006/jctb.1993.1027
10.1145/1109557.1109590
10.1002/jgt.20025
10.1016/S0022-0000(03)00030-8
10.1006/jcss.2000.1713
10.1137/050623395
10.1145/380752.380867
10.1006/jcss.2001.1809
10.1145/602220.602222
10.1007/978-3-540-92248-3_30
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2168/LMCS-8(1:32)2012
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361
10_2168_LMCS_8_1_32_2012
GroupedDBID .DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c351t-6e3ba9ee8aa95731bae3c7ac467e190ceaa75e57f4038a9b1059ec925b55021f3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302505000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:36:10 EDT 2025
Sat Nov 29 06:21:50 EST 2025
Tue Nov 18 22:42:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6e3ba9ee8aa95731bae3c7ac467e190ceaa75e57f4038a9b1059ec925b55021f3
OpenAccessLink https://doaj.org/article/fe663bbcca434c59a6a11224a1ce9361
ParticipantIDs doaj_primary_oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361
crossref_citationtrail_10_2168_LMCS_8_1_32_2012
crossref_primary_10_2168_LMCS_8_1_32_2012
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Logical methods in computer science
PublicationYear 2012
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
References 10.2168/LMCS-8(1:32)2012_fre90
10.2168/LMCS-8(1:32)2012_Adler08a
10.2168/LMCS-8(1:32)2012_KolaitisV00
10.2168/LMCS-8(1:32)2012_Adler08
10.2168/LMCS-8(1:32)2012_Adler07
10.2168/LMCS-8(1:32)2012_gotleosca02
Stefan Arnborg (10.2168/LMCS-8(1:32)2012_Arnborg85) 1985; 25
10.2168/LMCS-8(1:32)2012_gotleosca03
10.2168/LMCS-8(1:32)2012_Bodlaender96
10.2168/LMCS-8(1:32)2012_FG06
10.2168/LMCS-8(1:32)2012_seytho93
10.2168/LMCS-8(1:32)2012_chedal05
10.2168/LMCS-8(1:32)2012_dalkolvar02
10.2168/LMCS-8(1:32)2012_kreord08
10.2168/LMCS-8(1:32)2012_chamer77
10.2168/LMCS-8(1:32)2012_cheraj00
10.2168/LMCS-8(1:32)2012_DF99
10.2168/LMCS-8(1:32)2012_Grohe07
10.2168/LMCS-8(1:32)2012_ebbflu90
10.2168/LMCS-8(1:32)2012_DFT1996
10.2168/LMCS-8(1:32)2012_GottlobGS05
10.2168/LMCS-8(1:32)2012_yan81
10.2168/LMCS-8(1:32)2012_fedvar98
10.2168/LMCS-8(1:32)2012_adl04
10.2168/LMCS-8(1:32)2012_die06
10.2168/LMCS-8(1:32)2012_flufrigro01
10.2168/LMCS-8(1:32)2012_gromar06
10.2168/LMCS-8(1:32)2012_GroheSS01
10.2168/LMCS-8(1:32)2012_vardi95
References_xml – ident: 10.2168/LMCS-8(1:32)2012_Adler07
  doi: 10.1016/j.jctb.2006.12.006
– ident: 10.2168/LMCS-8(1:32)2012_fre90
– ident: 10.2168/LMCS-8(1:32)2012_cheraj00
  doi: 10.1016/S0304-3975(99)00220-0
– ident: 10.2168/LMCS-8(1:32)2012_Grohe07
  doi: 10.1145/1206035.1206036
– ident: 10.2168/LMCS-8(1:32)2012_Bodlaender96
  doi: 10.1137/S0097539793251219
– ident: 10.2168/LMCS-8(1:32)2012_fedvar98
  doi: 10.1137/S0097539794266766
– volume: 25
  start-page: 2
  issue: 1
  year: 1985
  ident: 10.2168/LMCS-8(1:32)2012_Arnborg85
  publication-title: BIT
– ident: 10.2168/LMCS-8(1:32)2012_die06
  doi: 10.1007/978-3-642-14279-6_7
– ident: 10.2168/LMCS-8(1:32)2012_vardi95
  doi: 10.1145/212433.212474
– ident: 10.2168/LMCS-8(1:32)2012_FG06
– ident: 10.2168/LMCS-8(1:32)2012_DF99
  doi: 10.1007/978-1-4612-0515-9
– ident: 10.2168/LMCS-8(1:32)2012_chamer77
  doi: 10.1145/800105.803397
– ident: 10.2168/LMCS-8(1:32)2012_Adler08
  doi: 10.1145/1376916.1376959
– ident: 10.2168/LMCS-8(1:32)2012_GottlobGS05
– ident: 10.2168/LMCS-8(1:32)2012_dalkolvar02
  doi: 10.1007/3-540-46135-3_21
– ident: 10.2168/LMCS-8(1:32)2012_DFT1996
– ident: 10.2168/LMCS-8(1:32)2012_chedal05
  doi: 10.1007/11538363_17
– ident: 10.2168/LMCS-8(1:32)2012_seytho93
  doi: 10.1006/jctb.1993.1027
– ident: 10.2168/LMCS-8(1:32)2012_gromar06
  doi: 10.1145/1109557.1109590
– ident: 10.2168/LMCS-8(1:32)2012_adl04
  doi: 10.1002/jgt.20025
– ident: 10.2168/LMCS-8(1:32)2012_gotleosca03
  doi: 10.1016/S0022-0000(03)00030-8
– ident: 10.2168/LMCS-8(1:32)2012_KolaitisV00
  doi: 10.1006/jcss.2000.1713
– ident: 10.2168/LMCS-8(1:32)2012_Adler08a
  doi: 10.1137/050623395
– ident: 10.2168/LMCS-8(1:32)2012_yan81
– ident: 10.2168/LMCS-8(1:32)2012_GroheSS01
  doi: 10.1145/380752.380867
– ident: 10.2168/LMCS-8(1:32)2012_gotleosca02
  doi: 10.1006/jcss.2001.1809
– ident: 10.2168/LMCS-8(1:32)2012_ebbflu90
– ident: 10.2168/LMCS-8(1:32)2012_flufrigro01
  doi: 10.1145/602220.602222
– ident: 10.2168/LMCS-8(1:32)2012_kreord08
  doi: 10.1007/978-3-540-92248-3_30
SSID ssj0000331826
Score 1.9292554
Snippet We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we...
We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms computer science - logic in computer science
f.2
f.4.1
h.2.3
Title Tree-width for first order formulae
URI https://doaj.org/article/fe663bbcca434c59a6a11224a1ce9361
Volume 8, Issue 1
WOSCitedRecordID wos000302505000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4yPHjxW5xfFPTgDmHNV5t407HhYRuCU3YLSfoWB3PK7PTmbzdpO5kXvXgptKRt-rxtnudNyvMidMGSmKc8S7ARKsacxTG2lDOcUOuyTHACpc_2Yz8dDuV4rO5WSn2Ff8Iqe-AKuHYOnhOt9TfijDuhTGJIWA0yxIFiVeITp2olmSrHYMaCcK7WJSlJZLs_6NxjeUmuGG150qM_eGjFrr_kld422qwFYXRddWQHrcFsF20tiy1E9be3h85HcwD8McmKp8gLzSifeN0Wlc6ZYf95MTWwjx563VHnFtcVDrBjghQ4AWaNApDGKJEyYg0wlxrnRy_wTO3AmFSASHMeM2mUDWIInKLC-sSCkpwdoMbsZQaHKJKcKLDKCUlynhmmjCJOAVUul9IAbaL28nm1q-2_QxWKqfZpQEBIB4S01EQzqgNCTdT6PuO1sr74pe1NgPC7XTCtLg_4UOo6lPqvUB79x0WO0UboUDVLcoIaxXwBp2jdvReTt_lZ-Zb47eCz-wVmpsBF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-width+for+first+order+formulae&rft.jtitle=Logical+methods+in+computer+science&rft.au=Isolde+Adler&rft.au=Mark+Weyer&rft.date=2012-01-01&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=8%2C+Issue+1&rft_id=info:doi/10.2168%2FLMCS-8%281%3A32%292012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon