Tree-width for first order formulae
We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 8, Issue 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
01.01.2012
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce tree-width for first order formulae \phi, fotw(\phi). We show
that computing fotw is fixed-parameter tractable with parameter fotw. Moreover,
we show that on classes of formulae of bounded fotw, model checking is fixed
parameter tractable, with parameter the length of the formula. This is done by
translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable
fragment L^k of first order logic. For fixed k, the question whether a given
first order formula is equivalent to an L^k formula is undecidable. In
contrast, the classes of first order formulae with bounded fotw are fragments
of first order logic for which the equivalence is decidable.
Our notion of tree-width generalises tree-width of conjunctive queries to
arbitrary formulae of first order logic by taking into account the quantifier
interaction in a formula. Moreover, it is more powerful than the notion of
elimination-width of quantified constraint formulae, defined by Chen and Dalmau
(CSL 2005): for quantified constraint formulae, both bounded elimination-width
and bounded fotw allow for model checking in polynomial time. We prove that
fotw of a quantified constraint formula \phi\ is bounded by the
elimination-width of \phi, and we exhibit a class of quantified constraint
formulae with bounded fotw, that has unbounded elimination-width. A similar
comparison holds for strict tree-width of non-recursive stratified datalog as
defined by Flum, Frick, and Grohe (JACM 49, 2002).
Finally, we show that fotw has a characterization in terms of a cops and
robbers game without monotonicity cost. |
|---|---|
| AbstractList | We introduce tree-width for first order formulae \phi, fotw(\phi). We show
that computing fotw is fixed-parameter tractable with parameter fotw. Moreover,
we show that on classes of formulae of bounded fotw, model checking is fixed
parameter tractable, with parameter the length of the formula. This is done by
translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable
fragment L^k of first order logic. For fixed k, the question whether a given
first order formula is equivalent to an L^k formula is undecidable. In
contrast, the classes of first order formulae with bounded fotw are fragments
of first order logic for which the equivalence is decidable.
Our notion of tree-width generalises tree-width of conjunctive queries to
arbitrary formulae of first order logic by taking into account the quantifier
interaction in a formula. Moreover, it is more powerful than the notion of
elimination-width of quantified constraint formulae, defined by Chen and Dalmau
(CSL 2005): for quantified constraint formulae, both bounded elimination-width
and bounded fotw allow for model checking in polynomial time. We prove that
fotw of a quantified constraint formula \phi\ is bounded by the
elimination-width of \phi, and we exhibit a class of quantified constraint
formulae with bounded fotw, that has unbounded elimination-width. A similar
comparison holds for strict tree-width of non-recursive stratified datalog as
defined by Flum, Frick, and Grohe (JACM 49, 2002).
Finally, we show that fotw has a characterization in terms of a cops and
robbers game without monotonicity cost. We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost. |
| Author | Weyer, Mark Adler, Isolde |
| Author_xml | – sequence: 1 givenname: Isolde surname: Adler fullname: Adler, Isolde – sequence: 2 givenname: Mark surname: Weyer fullname: Weyer, Mark |
| BookMark | eNp1kE1LAzEQhoNUsNbePRa86GE1k2yyG29S_ChUPFjPYTadaMq2kWxE_Pd2rYIIzmU-4HkY3kM22MQNMXYM_FyAri_m99PHoj6FSynOBAexx4ZQa14oU5WDX_MBG3fdim9LSqiFHrKTRSIq3sMyv0x8TBMfUpcnMS0p9fv6rUU6Yvse247G333Enm6uF9O7Yv5wO5tezQsnFeRCk2zQENWIRlUSGiTpKnSlrggMd4RYKVKVL7ms0TTAlSFnhGqU4gK8HLHZzruMuLKvKawxfdiIwX4dYnq2mHJwLVlPWsumcQ5LWTplUCOAECWCIyM1bF1653Ipdl0ib13ImEPc5IShtcBtn5ztk7O1BSuF7ZPbgvwP-PPIv8gndNJxhw |
| CitedBy_id | crossref_primary_10_1145_3073409 |
| Cites_doi | 10.1016/j.jctb.2006.12.006 10.1016/S0304-3975(99)00220-0 10.1145/1206035.1206036 10.1137/S0097539793251219 10.1137/S0097539794266766 10.1007/978-3-642-14279-6_7 10.1145/212433.212474 10.1007/978-1-4612-0515-9 10.1145/800105.803397 10.1145/1376916.1376959 10.1007/3-540-46135-3_21 10.1007/11538363_17 10.1006/jctb.1993.1027 10.1145/1109557.1109590 10.1002/jgt.20025 10.1016/S0022-0000(03)00030-8 10.1006/jcss.2000.1713 10.1137/050623395 10.1145/380752.380867 10.1006/jcss.2001.1809 10.1145/602220.602222 10.1007/978-3-540-92248-3_30 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.2168/LMCS-8(1:32)2012 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| ExternalDocumentID | oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361 10_2168_LMCS_8_1_32_2012 |
| GroupedDBID | .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 M~E OK1 OVT P2P TR2 TUS XSB |
| ID | FETCH-LOGICAL-c351t-6e3ba9ee8aa95731bae3c7ac467e190ceaa75e57f4038a9b1059ec925b55021f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302505000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:36:10 EDT 2025 Sat Nov 29 06:21:50 EST 2025 Tue Nov 18 22:42:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-6e3ba9ee8aa95731bae3c7ac467e190ceaa75e57f4038a9b1059ec925b55021f3 |
| OpenAccessLink | https://doaj.org/article/fe663bbcca434c59a6a11224a1ce9361 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361 crossref_citationtrail_10_2168_LMCS_8_1_32_2012 crossref_primary_10_2168_LMCS_8_1_32_2012 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2012 |
| Publisher | Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science e.V |
| References | 10.2168/LMCS-8(1:32)2012_fre90 10.2168/LMCS-8(1:32)2012_Adler08a 10.2168/LMCS-8(1:32)2012_KolaitisV00 10.2168/LMCS-8(1:32)2012_Adler08 10.2168/LMCS-8(1:32)2012_Adler07 10.2168/LMCS-8(1:32)2012_gotleosca02 Stefan Arnborg (10.2168/LMCS-8(1:32)2012_Arnborg85) 1985; 25 10.2168/LMCS-8(1:32)2012_gotleosca03 10.2168/LMCS-8(1:32)2012_Bodlaender96 10.2168/LMCS-8(1:32)2012_FG06 10.2168/LMCS-8(1:32)2012_seytho93 10.2168/LMCS-8(1:32)2012_chedal05 10.2168/LMCS-8(1:32)2012_dalkolvar02 10.2168/LMCS-8(1:32)2012_kreord08 10.2168/LMCS-8(1:32)2012_chamer77 10.2168/LMCS-8(1:32)2012_cheraj00 10.2168/LMCS-8(1:32)2012_DF99 10.2168/LMCS-8(1:32)2012_Grohe07 10.2168/LMCS-8(1:32)2012_ebbflu90 10.2168/LMCS-8(1:32)2012_DFT1996 10.2168/LMCS-8(1:32)2012_GottlobGS05 10.2168/LMCS-8(1:32)2012_yan81 10.2168/LMCS-8(1:32)2012_fedvar98 10.2168/LMCS-8(1:32)2012_adl04 10.2168/LMCS-8(1:32)2012_die06 10.2168/LMCS-8(1:32)2012_flufrigro01 10.2168/LMCS-8(1:32)2012_gromar06 10.2168/LMCS-8(1:32)2012_GroheSS01 10.2168/LMCS-8(1:32)2012_vardi95 |
| References_xml | – ident: 10.2168/LMCS-8(1:32)2012_Adler07 doi: 10.1016/j.jctb.2006.12.006 – ident: 10.2168/LMCS-8(1:32)2012_fre90 – ident: 10.2168/LMCS-8(1:32)2012_cheraj00 doi: 10.1016/S0304-3975(99)00220-0 – ident: 10.2168/LMCS-8(1:32)2012_Grohe07 doi: 10.1145/1206035.1206036 – ident: 10.2168/LMCS-8(1:32)2012_Bodlaender96 doi: 10.1137/S0097539793251219 – ident: 10.2168/LMCS-8(1:32)2012_fedvar98 doi: 10.1137/S0097539794266766 – volume: 25 start-page: 2 issue: 1 year: 1985 ident: 10.2168/LMCS-8(1:32)2012_Arnborg85 publication-title: BIT – ident: 10.2168/LMCS-8(1:32)2012_die06 doi: 10.1007/978-3-642-14279-6_7 – ident: 10.2168/LMCS-8(1:32)2012_vardi95 doi: 10.1145/212433.212474 – ident: 10.2168/LMCS-8(1:32)2012_FG06 – ident: 10.2168/LMCS-8(1:32)2012_DF99 doi: 10.1007/978-1-4612-0515-9 – ident: 10.2168/LMCS-8(1:32)2012_chamer77 doi: 10.1145/800105.803397 – ident: 10.2168/LMCS-8(1:32)2012_Adler08 doi: 10.1145/1376916.1376959 – ident: 10.2168/LMCS-8(1:32)2012_GottlobGS05 – ident: 10.2168/LMCS-8(1:32)2012_dalkolvar02 doi: 10.1007/3-540-46135-3_21 – ident: 10.2168/LMCS-8(1:32)2012_DFT1996 – ident: 10.2168/LMCS-8(1:32)2012_chedal05 doi: 10.1007/11538363_17 – ident: 10.2168/LMCS-8(1:32)2012_seytho93 doi: 10.1006/jctb.1993.1027 – ident: 10.2168/LMCS-8(1:32)2012_gromar06 doi: 10.1145/1109557.1109590 – ident: 10.2168/LMCS-8(1:32)2012_adl04 doi: 10.1002/jgt.20025 – ident: 10.2168/LMCS-8(1:32)2012_gotleosca03 doi: 10.1016/S0022-0000(03)00030-8 – ident: 10.2168/LMCS-8(1:32)2012_KolaitisV00 doi: 10.1006/jcss.2000.1713 – ident: 10.2168/LMCS-8(1:32)2012_Adler08a doi: 10.1137/050623395 – ident: 10.2168/LMCS-8(1:32)2012_yan81 – ident: 10.2168/LMCS-8(1:32)2012_GroheSS01 doi: 10.1145/380752.380867 – ident: 10.2168/LMCS-8(1:32)2012_gotleosca02 doi: 10.1006/jcss.2001.1809 – ident: 10.2168/LMCS-8(1:32)2012_ebbflu90 – ident: 10.2168/LMCS-8(1:32)2012_flufrigro01 doi: 10.1145/602220.602222 – ident: 10.2168/LMCS-8(1:32)2012_kreord08 doi: 10.1007/978-3-540-92248-3_30 |
| SSID | ssj0000331826 |
| Score | 1.9292554 |
| Snippet | We introduce tree-width for first order formulae \phi, fotw(\phi). We show
that computing fotw is fixed-parameter tractable with parameter fotw. Moreover,
we... We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | computer science - logic in computer science f.2 f.4.1 h.2.3 |
| Title | Tree-width for first order formulae |
| URI | https://doaj.org/article/fe663bbcca434c59a6a11224a1ce9361 |
| Volume | 8, Issue 1 |
| WOSCitedRecordID | wos000302505000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4yPHjxW5xfFPTgDmHNV5t407HhYRuCU3YLSfoWB3PK7PTmbzdpO5kXvXgptKRt-rxtnudNyvMidMGSmKc8S7ARKsacxTG2lDOcUOuyTHACpc_2Yz8dDuV4rO5WSn2Ff8Iqe-AKuHYOnhOt9TfijDuhTGJIWA0yxIFiVeITp2olmSrHYMaCcK7WJSlJZLs_6NxjeUmuGG150qM_eGjFrr_kld422qwFYXRddWQHrcFsF20tiy1E9be3h85HcwD8McmKp8gLzSifeN0Wlc6ZYf95MTWwjx563VHnFtcVDrBjghQ4AWaNApDGKJEyYg0wlxrnRy_wTO3AmFSASHMeM2mUDWIInKLC-sSCkpwdoMbsZQaHKJKcKLDKCUlynhmmjCJOAVUul9IAbaL28nm1q-2_QxWKqfZpQEBIB4S01EQzqgNCTdT6PuO1sr74pe1NgPC7XTCtLg_4UOo6lPqvUB79x0WO0UboUDVLcoIaxXwBp2jdvReTt_lZ-Zb47eCz-wVmpsBF |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-width+for+first+order+formulae&rft.jtitle=Logical+methods+in+computer+science&rft.au=Isolde+Adler&rft.au=Mark+Weyer&rft.date=2012-01-01&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=8%2C+Issue+1&rft_id=info:doi/10.2168%2FLMCS-8%281%3A32%292012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe663bbcca434c59a6a11224a1ce9361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |