Event-Triggered Optimal Control With Performance Guarantees Using Adaptive Dynamic Programming

This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performan...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 31; číslo 1; s. 76 - 88
Hlavní autori: Luo, Biao, Yang, Yin, Liu, Derong, Wu, Huai-Ning
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2899594