Event-Triggered Optimal Control With Performance Guarantees Using Adaptive Dynamic Programming

This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performan...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 31; no. 1; pp. 76 - 88
Main Authors: Luo, Biao, Yang, Yin, Liu, Derong, Wu, Huai-Ning
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.
AbstractList This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.
This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.
Author Yang, Yin
Luo, Biao
Liu, Derong
Wu, Huai-Ning
Author_xml – sequence: 1
  givenname: Biao
  orcidid: 0000-0002-3353-2586
  surname: Luo
  fullname: Luo, Biao
  email: biao.luo@hotmail.com
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Yin
  surname: Yang
  fullname: Yang, Yin
  email: yyang@qf.org.qa
  organization: College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
– sequence: 3
  givenname: Derong
  orcidid: 0000-0003-3715-4778
  surname: Liu
  fullname: Liu, Derong
  email: derongliu@foxmail.com
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Huai-Ning
  orcidid: 0000-0002-4366-5147
  surname: Wu
  fullname: Wu, Huai-Ning
  email: whn@buaa.edu.cn
  organization: Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30892242$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaR7NH2ihGLrpxhM9bFlahmmaFIYkkAntqkK2r6YKtjSR5ED-fTSZ6SyyqDb3gr6jq3vOMTpw3gFCnwieEYLl2fL6enE3o5jIGRVS1rJ6h44o4bSkTIiDfd_8PkSnMT7gfDiueSU_oEOGhaS0okfoz8UTuFQug12tIEBf3KyTHfVQzL1LwQ_FL5v-FrcQjA-jdh0Ul5MO2iWAWNxH61bFea-z5gmK789Oj7YrboNfBT2O-fIjem_0EOF0V0_Q_Y-L5fyqXNxc_pyfL8qO1SSVXDLDa9FXLWsbI6uukUaYqudStHk5gXFPewm874U2rcFtRUxucStJq2vD2An6tn13HfzjBDGp0cYOhkE78FNUlMiqFrXEPKNf36APfgou_05RxljDaIVFpr7sqKkdoVfrkF0Jz-qfcxmgW6ALPsYAZo8QrDYJqdeE1CYhtUsoi8QbUWeTTnbjtbbD_6Wft1ILAPtZgvNGNJK9AMVBnmo
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_automatica_2021_110058
crossref_primary_10_1109_TCYB_2020_2970969
crossref_primary_10_1109_TFUZZ_2021_3052610
crossref_primary_10_1002_rnc_4843
crossref_primary_10_15622_ia_24_3_1
crossref_primary_10_1007_s00521_021_05696_2
crossref_primary_10_1109_TII_2021_3116084
crossref_primary_10_1080_01691864_2022_2155489
crossref_primary_10_1109_TAES_2025_3560941
crossref_primary_10_1016_j_sysconle_2024_106013
crossref_primary_10_1002_rnc_6191
crossref_primary_10_3390_en15072374
crossref_primary_10_1016_j_ast_2020_106233
crossref_primary_10_3390_e24070889
crossref_primary_10_1109_TFUZZ_2023_3245294
crossref_primary_10_1002_rnc_6979
crossref_primary_10_1002_asjc_3203
crossref_primary_10_1109_TNNLS_2020_3009015
crossref_primary_10_1002_rnc_5403
crossref_primary_10_1109_TNNLS_2021_3053037
crossref_primary_10_1002_acs_3494
crossref_primary_10_1016_j_neunet_2022_04_013
crossref_primary_10_1109_TNNLS_2020_3030712
crossref_primary_10_1109_TCYB_2022_3170355
crossref_primary_10_1109_TNNLS_2021_3051017
crossref_primary_10_1007_s00500_020_05293_w
crossref_primary_10_1002_oca_2907
crossref_primary_10_1109_TNNLS_2021_3105646
crossref_primary_10_1002_oca_2905
crossref_primary_10_1016_j_isatra_2023_11_030
crossref_primary_10_1109_TCSI_2024_3426982
crossref_primary_10_1002_rnc_5410
crossref_primary_10_1002_rnc_6340
crossref_primary_10_1109_ACCESS_2021_3140076
crossref_primary_10_1007_s11071_021_06624_8
crossref_primary_10_1016_j_neucom_2022_03_049
crossref_primary_10_1016_j_eswa_2025_128403
crossref_primary_10_1016_j_comcom_2021_07_027
crossref_primary_10_1016_j_neucom_2023_03_045
crossref_primary_10_1002_rnc_6646
crossref_primary_10_1109_TSMC_2022_3220028
crossref_primary_10_1007_s11071_022_07513_4
crossref_primary_10_3390_app13042140
crossref_primary_10_1002_rnc_6372
crossref_primary_10_1109_TITS_2024_3428389
crossref_primary_10_1002_rnc_5687
crossref_primary_10_1109_TIE_2020_2984462
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1007_s11071_022_07438_y
crossref_primary_10_1016_j_neucom_2020_06_026
crossref_primary_10_1109_TNNLS_2023_3244934
crossref_primary_10_1016_j_neucom_2022_09_119
crossref_primary_10_1080_00207721_2021_2023685
crossref_primary_10_1109_TSMC_2020_2997559
crossref_primary_10_1016_j_jfranklin_2022_02_034
crossref_primary_10_1016_j_neucom_2021_03_017
crossref_primary_10_1016_j_jai_2023_11_002
crossref_primary_10_1109_TSMC_2023_3302656
crossref_primary_10_1016_j_ins_2023_119070
crossref_primary_10_1109_TCYB_2021_3103820
crossref_primary_10_1109_TFUZZ_2021_3064678
crossref_primary_10_1109_TCSI_2021_3095092
crossref_primary_10_1109_ACCESS_2020_3040185
crossref_primary_10_1007_s10462_021_09997_9
crossref_primary_10_1007_s00034_021_01890_8
crossref_primary_10_1016_j_neunet_2020_07_016
crossref_primary_10_1016_j_neunet_2023_05_001
crossref_primary_10_1109_JAS_2023_123843
crossref_primary_10_1109_TCE_2023_3321109
crossref_primary_10_1109_TNNLS_2022_3225090
crossref_primary_10_1109_TSMC_2025_3549599
crossref_primary_10_1109_TSMC_2021_3073429
crossref_primary_10_1109_TVT_2024_3491430
crossref_primary_10_1109_TASE_2023_3299275
crossref_primary_10_1109_TVT_2024_3432736
crossref_primary_10_1109_ACCESS_2021_3061255
crossref_primary_10_1109_TII_2025_3574365
crossref_primary_10_1016_j_neucom_2020_10_012
crossref_primary_10_1109_TASE_2024_3354830
crossref_primary_10_1109_TNNLS_2021_3094901
crossref_primary_10_1016_j_ins_2021_10_073
crossref_primary_10_1080_00207721_2022_2111238
crossref_primary_10_1002_rnc_6950
crossref_primary_10_1109_TCYB_2020_3044595
crossref_primary_10_1007_s10489_024_05631_7
crossref_primary_10_1002_oca_3001
crossref_primary_10_1016_j_cnsns_2024_107928
crossref_primary_10_1109_TCYB_2021_3121409
crossref_primary_10_1016_j_ins_2023_119577
crossref_primary_10_1007_s11071_023_08862_4
crossref_primary_10_1109_TASE_2025_3582898
crossref_primary_10_1109_TFUZZ_2022_3227993
crossref_primary_10_1109_TNNLS_2022_3153028
crossref_primary_10_1007_s11071_022_07970_x
crossref_primary_10_1016_j_neucom_2023_126711
crossref_primary_10_1109_TSMC_2024_3450274
crossref_primary_10_1007_s12555_021_0210_1
crossref_primary_10_1016_j_eswa_2024_124573
crossref_primary_10_1109_TASE_2024_3368438
crossref_primary_10_1016_j_neucom_2022_07_072
crossref_primary_10_1002_asjc_3078
crossref_primary_10_1016_j_amc_2024_129059
crossref_primary_10_1002_acs_3980
crossref_primary_10_1016_j_neucom_2021_01_070
crossref_primary_10_1016_j_neucom_2021_04_133
crossref_primary_10_1109_ACCESS_2022_3166473
crossref_primary_10_1109_TFUZZ_2023_3302154
crossref_primary_10_1002_rnc_6452
crossref_primary_10_1109_TSMC_2020_3003368
crossref_primary_10_1109_TCYB_2021_3054626
crossref_primary_10_1016_j_ins_2023_119679
crossref_primary_10_1109_TNNLS_2021_3056444
crossref_primary_10_1016_j_jfranklin_2023_09_021
crossref_primary_10_1109_TCYB_2022_3164977
crossref_primary_10_1109_TNNLS_2020_2979174
crossref_primary_10_1109_TCYB_2023_3293466
crossref_primary_10_1109_ACCESS_2020_3043498
crossref_primary_10_1016_j_ast_2021_107204
crossref_primary_10_1016_j_neucom_2023_126965
crossref_primary_10_1109_ACCESS_2020_3043775
crossref_primary_10_1109_TFUZZ_2020_2966185
crossref_primary_10_1109_TCYB_2020_3002108
crossref_primary_10_1016_j_neucom_2021_01_061
crossref_primary_10_1109_TAES_2023_3292809
crossref_primary_10_1109_TETCI_2023_3303095
crossref_primary_10_1109_TCYB_2020_3027344
crossref_primary_10_1007_s10462_021_10118_9
crossref_primary_10_1109_TCYB_2019_2909704
Cites_doi 10.1109/TSMCB.2008.926614
10.1109/CDC.2012.6425820
10.1109/TCYB.2016.2523878
10.1109/TNNLS.2016.2614002
10.1109/TNNLS.2015.2472974
10.1109/TNN.2009.2027233
10.1109/TNNLS.2013.2251747
10.1109/JAS.2014.7004686
10.1109/TSMC.2017.2774602
10.1109/TNNLS.2015.2453320
10.1109/TNNLS.2015.2441712
10.1109/TIE.2016.2597763
10.1109/TNNLS.2016.2539366
10.1109/TNNLS.2012.2227339
10.1016/j.automatica.2010.02.018
10.1016/j.neunet.2009.03.008
10.1007/978-3-319-50815-3
10.1109/TSMC.2016.2592682
10.1109/TNNLS.2017.2773458
10.1016/j.automatica.2014.10.056
10.1109/TNNLS.2013.2247627
10.1016/j.automatica.2014.08.023
10.1109/TNNLS.2015.2511658
10.1016/j.automatica.2004.11.034
10.1109/JAS.2017.7510682
10.1109/TNNLS.2016.2541020
10.1049/iet-cta.2013.0253
10.1109/TNNLS.2016.2586303
10.1109/JAS.2016.7510262
10.1109/TNNLS.2016.2642128
10.1109/TNNLS.2013.2281663
10.1109/TNNLS.2012.2196708
10.1109/TNNLS.2013.2276571
10.1016/j.automatica.2017.03.013
10.1109/TAC.2007.904277
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2899594
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 88
ExternalDocumentID 30892242
10_1109_TNNLS_2019_2899594
8667879
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Qatar National Research Fund
  grantid: NPRP9-466-1-103
  funderid: 10.13039/100008982
– fundername: National Natural Science Foundation of China
  grantid: 61873350; 61503377; 61721091; 61625302; 61533017; U1501251
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-693f658d4b3b7f94c79f8f4d698b899800d2d9e6dd8afbf0b41fd8a0b91ba5f33
IEDL.DBID RIE
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506609000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 21:19:59 EDT 2025
Sun Nov 30 04:12:35 EST 2025
Thu Jan 02 22:59:11 EST 2025
Sat Nov 29 01:40:02 EST 2025
Tue Nov 18 20:59:39 EST 2025
Wed Aug 27 06:28:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-693f658d4b3b7f94c79f8f4d698b899800d2d9e6dd8afbf0b41fd8a0b91ba5f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3353-2586
0000-0003-3715-4778
0000-0002-4366-5147
PMID 30892242
PQID 2333732408
PQPubID 85436
PageCount 13
ParticipantIDs ieee_primary_8667879
crossref_citationtrail_10_1109_TNNLS_2019_2899594
pubmed_primary_30892242
crossref_primary_10_1109_TNNLS_2019_2899594
proquest_journals_2333732408
proquest_miscellaneous_2194585906
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
lewis (ref1) 2013
ge (ref37) 2001
ref36
ref14
ref31
ref30
ref33
ref11
khalil (ref38) 2002; 3
ref32
ref10
ref2
ref39
ref17
ref16
ref19
ref18
ref24
ref23
franklin (ref40) 1986
ref26
ref25
ref20
lemmon (ref21) 2010
ref41
ref28
ref27
ref29
vamvoudakis (ref22) 2014; 1
ref7
ref9
ref4
ref3
ref6
ref5
lewis (ref8) 2013; 17
References_xml – ident: ref3
  doi: 10.1109/TSMCB.2008.926614
– ident: ref20
  doi: 10.1109/CDC.2012.6425820
– ident: ref27
  doi: 10.1109/TCYB.2016.2523878
– ident: ref26
  doi: 10.1109/TNNLS.2016.2614002
– year: 1986
  ident: ref40
  publication-title: Feedback Control of Dynamic Systems
– ident: ref12
  doi: 10.1109/TNNLS.2015.2472974
– ident: ref5
  doi: 10.1109/TNN.2009.2027233
– ident: ref33
  doi: 10.1109/TNNLS.2013.2251747
– volume: 1
  start-page: 282
  year: 2014
  ident: ref22
  article-title: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2014.7004686
– ident: ref35
  doi: 10.1109/TSMC.2017.2774602
– ident: ref23
  doi: 10.1109/TNNLS.2015.2453320
– ident: ref34
  doi: 10.1109/TNNLS.2015.2441712
– ident: ref28
  doi: 10.1109/TIE.2016.2597763
– ident: ref25
  doi: 10.1109/TNNLS.2016.2539366
– ident: ref7
  doi: 10.1109/TNNLS.2012.2227339
– start-page: 293
  year: 2010
  ident: ref21
  publication-title: Event-triggered feedback in control estimation and optimization
– ident: ref36
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref4
  doi: 10.1016/j.neunet.2009.03.008
– year: 2001
  ident: ref37
  publication-title: Stable Adaptive Neural Network Control
– volume: 3
  year: 2002
  ident: ref38
  publication-title: Nonlinear Systems
– ident: ref14
  doi: 10.1007/978-3-319-50815-3
– ident: ref32
  doi: 10.1109/TSMC.2016.2592682
– ident: ref15
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref11
  doi: 10.1016/j.automatica.2014.10.056
– ident: ref10
  doi: 10.1109/TNNLS.2013.2247627
– year: 2013
  ident: ref1
  publication-title: Optimal Control
– ident: ref13
  doi: 10.1016/j.automatica.2014.08.023
– ident: ref16
  doi: 10.1109/TNNLS.2015.2511658
– ident: ref2
  doi: 10.1016/j.automatica.2004.11.034
– volume: 17
  year: 2013
  ident: ref8
  publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
– ident: ref18
  doi: 10.1109/JAS.2017.7510682
– ident: ref29
  doi: 10.1109/TNNLS.2016.2541020
– ident: ref39
  doi: 10.1049/iet-cta.2013.0253
– ident: ref24
  doi: 10.1109/TNNLS.2016.2586303
– ident: ref17
  doi: 10.1109/JAS.2016.7510262
– ident: ref31
  doi: 10.1109/TNNLS.2016.2642128
– ident: ref41
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref6
  doi: 10.1109/TNNLS.2012.2196708
– ident: ref9
  doi: 10.1109/TNNLS.2013.2276571
– ident: ref30
  doi: 10.1016/j.automatica.2017.03.013
– ident: ref19
  doi: 10.1109/TAC.2007.904277
SSID ssj0000605649
Score 2.6314116
Snippet This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms Adaptive control
Adaptive dynamic programming (ADP)
Artificial neural networks
Computer simulation
Dynamic programming
event-triggered
Indexes
Learning systems
Lower bounds
Mathematical model
neural network (NN)
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
Performance analysis
performance guarantee
Upper bounds
Title Event-Triggered Optimal Control With Performance Guarantees Using Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/8667879
https://www.ncbi.nlm.nih.gov/pubmed/30892242
https://www.proquest.com/docview/2333732408
https://www.proquest.com/docview/2194585906
Volume 31
WOSCitedRecordID wos000506609000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61FQcuFFoegVIZiRu4tdeO7TlWpVUPVYhEEDmx2l2PSyWaVE3C78f2PhASVOptJdu71n5jz4w9Mx_Ae9lIh5bGXJtKc01NxSsXkJOtMWo_8q7KicKXdjJx8zlOt-DjkAtDRDn4jI7SY77L98tmk47Kjp2JW6vFbdi21rS5WsN5ioh2ucnWbiFNwQtl532OjMDj2WRy-SUFcuFR8jDGmPh4lHAYNVjxl0rKHCv_Nzez2jnffdiEn8KTzrxkJ608PIMtWuzBbk_dwLqVvA_fz1KcI59F3_wqsXWyz3HruIkjT9vQdfbtev2DTf9kFbAkSwkFWrEcZsBOfHWb9kr2qSW1Z9M21OsmNj6Hr-dns9ML3lEt8EaN5ZobVCHaIl7XqrYBdWMxuKC9QVcnj0wIX3gk4yN2oQ6i1jLER1GjrKtxUOoF7CyWC3oFzKWKgk0lPQmvKaCzVhmyIRSeiuDMCGT_t8umq0Oe6DB-ltkfEVhmsMoEVtmBNYIPw5jbtgrHvb33ExRDzw6FERz0oJbdQl2VhVLKpqKEbgTvhua4xNK9SbWg5Sb2kaijV4Uizv1lKwzDu3sZev3vb76Bx0Vy0POZzQHsrO829BYeNb_W16u7wyjHc3eY5fg3Xg_t8A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcReGDA-CgOMxBt4c2w39j1OY9MQJVSiiD4RJbENk7Z2Wlv-fnzOB0ICJN4i2U6s_M6-O_vufgCvsiazaPyY67zSXPum4pUNyL2pMWo_72yVEoUnpijsfI7TLXgz5MJ471PwmT-gx3SX75bNho7KDm0et1aDN-AmMWdhm601nKiIaJnnyd6VWS65VGbeZ8kIPJwVxeQThXLhAfkYYyRGHiUsRh0mf1NKiWXl7wZnUjynu_835btwpzMw2VErEfdgyy_uw25P3sC6tbwHX08o0pHPonf-jfg62ce4eVzGkcdt8Dr7cr7-zqa_8goYSRPh4FcsBRqwI1dd0W7J3ra09mzaBntdxsYH8Pn0ZHZ8xjuyBd6ocbbmOaoQrRGna1WbgLoxGGzQLkdbk08mhJMOfe4ieqEOotZZiI-ixqyuxkGph7C9WC78Y2CWago2Vea8cNoHtMao3JsQpPMy2HwEWf-3y6arRE6EGBdl8kgElgmsksAqO7BG8HoYc9XW4fhn7z2CYujZoTCC_R7Usluqq1IqpQyVJbQjeDk0x0VGNyfVwi83sU-GOvpVKOLcH7XCMLy7l6Enf_7mC7h9NvswKSfvivdPYUeSu55OcPZhe3298c_gVvNjfb66fp6k-SddyPBX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Optimal+Control+With+Performance+Guarantees+Using+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Luo%2C+Biao&rft.au=Yang%2C+Yin&rft.au=Liu%2C+Derong&rft.au=Wu%2C+Huai-Ning&rft.date=2020-01-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=1&rft.spage=76&rft.epage=88&rft_id=info:doi/10.1109%2FTNNLS.2019.2899594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2899594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon