Event-Triggered Optimal Control With Performance Guarantees Using Adaptive Dynamic Programming
This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performan...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 31; no. 1; pp. 76 - 88 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method. |
|---|---|
| AbstractList | This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method. This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method. |
| Author | Yang, Yin Luo, Biao Liu, Derong Wu, Huai-Ning |
| Author_xml | – sequence: 1 givenname: Biao orcidid: 0000-0002-3353-2586 surname: Luo fullname: Luo, Biao email: biao.luo@hotmail.com organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Yin surname: Yang fullname: Yang, Yin email: yyang@qf.org.qa organization: College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar – sequence: 3 givenname: Derong orcidid: 0000-0003-3715-4778 surname: Liu fullname: Liu, Derong email: derongliu@foxmail.com organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Huai-Ning orcidid: 0000-0002-4366-5147 surname: Wu fullname: Wu, Huai-Ning email: whn@buaa.edu.cn organization: Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30892242$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJaR7NH2ihGLrpxhM9bFlahmmaFIYkkAntqkK2r6YKtjSR5ED-fTSZ6SyyqDb3gr6jq3vOMTpw3gFCnwieEYLl2fL6enE3o5jIGRVS1rJ6h44o4bSkTIiDfd_8PkSnMT7gfDiueSU_oEOGhaS0okfoz8UTuFQug12tIEBf3KyTHfVQzL1LwQ_FL5v-FrcQjA-jdh0Ul5MO2iWAWNxH61bFea-z5gmK789Oj7YrboNfBT2O-fIjem_0EOF0V0_Q_Y-L5fyqXNxc_pyfL8qO1SSVXDLDa9FXLWsbI6uukUaYqudStHk5gXFPewm874U2rcFtRUxucStJq2vD2An6tn13HfzjBDGp0cYOhkE78FNUlMiqFrXEPKNf36APfgou_05RxljDaIVFpr7sqKkdoVfrkF0Jz-qfcxmgW6ALPsYAZo8QrDYJqdeE1CYhtUsoi8QbUWeTTnbjtbbD_6Wft1ILAPtZgvNGNJK9AMVBnmo |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_automatica_2021_110058 crossref_primary_10_1109_TCYB_2020_2970969 crossref_primary_10_1109_TFUZZ_2021_3052610 crossref_primary_10_1002_rnc_4843 crossref_primary_10_15622_ia_24_3_1 crossref_primary_10_1007_s00521_021_05696_2 crossref_primary_10_1109_TII_2021_3116084 crossref_primary_10_1080_01691864_2022_2155489 crossref_primary_10_1109_TAES_2025_3560941 crossref_primary_10_1016_j_sysconle_2024_106013 crossref_primary_10_1002_rnc_6191 crossref_primary_10_3390_en15072374 crossref_primary_10_1016_j_ast_2020_106233 crossref_primary_10_3390_e24070889 crossref_primary_10_1109_TFUZZ_2023_3245294 crossref_primary_10_1002_rnc_6979 crossref_primary_10_1002_asjc_3203 crossref_primary_10_1109_TNNLS_2020_3009015 crossref_primary_10_1002_rnc_5403 crossref_primary_10_1109_TNNLS_2021_3053037 crossref_primary_10_1002_acs_3494 crossref_primary_10_1016_j_neunet_2022_04_013 crossref_primary_10_1109_TNNLS_2020_3030712 crossref_primary_10_1109_TCYB_2022_3170355 crossref_primary_10_1109_TNNLS_2021_3051017 crossref_primary_10_1007_s00500_020_05293_w crossref_primary_10_1002_oca_2907 crossref_primary_10_1109_TNNLS_2021_3105646 crossref_primary_10_1002_oca_2905 crossref_primary_10_1016_j_isatra_2023_11_030 crossref_primary_10_1109_TCSI_2024_3426982 crossref_primary_10_1002_rnc_5410 crossref_primary_10_1002_rnc_6340 crossref_primary_10_1109_ACCESS_2021_3140076 crossref_primary_10_1007_s11071_021_06624_8 crossref_primary_10_1016_j_neucom_2022_03_049 crossref_primary_10_1016_j_eswa_2025_128403 crossref_primary_10_1016_j_comcom_2021_07_027 crossref_primary_10_1016_j_neucom_2023_03_045 crossref_primary_10_1002_rnc_6646 crossref_primary_10_1109_TSMC_2022_3220028 crossref_primary_10_1007_s11071_022_07513_4 crossref_primary_10_3390_app13042140 crossref_primary_10_1002_rnc_6372 crossref_primary_10_1109_TITS_2024_3428389 crossref_primary_10_1002_rnc_5687 crossref_primary_10_1109_TIE_2020_2984462 crossref_primary_10_1109_TSMC_2020_3042876 crossref_primary_10_1007_s11071_022_07438_y crossref_primary_10_1016_j_neucom_2020_06_026 crossref_primary_10_1109_TNNLS_2023_3244934 crossref_primary_10_1016_j_neucom_2022_09_119 crossref_primary_10_1080_00207721_2021_2023685 crossref_primary_10_1109_TSMC_2020_2997559 crossref_primary_10_1016_j_jfranklin_2022_02_034 crossref_primary_10_1016_j_neucom_2021_03_017 crossref_primary_10_1016_j_jai_2023_11_002 crossref_primary_10_1109_TSMC_2023_3302656 crossref_primary_10_1016_j_ins_2023_119070 crossref_primary_10_1109_TCYB_2021_3103820 crossref_primary_10_1109_TFUZZ_2021_3064678 crossref_primary_10_1109_TCSI_2021_3095092 crossref_primary_10_1109_ACCESS_2020_3040185 crossref_primary_10_1007_s10462_021_09997_9 crossref_primary_10_1007_s00034_021_01890_8 crossref_primary_10_1016_j_neunet_2020_07_016 crossref_primary_10_1016_j_neunet_2023_05_001 crossref_primary_10_1109_JAS_2023_123843 crossref_primary_10_1109_TCE_2023_3321109 crossref_primary_10_1109_TNNLS_2022_3225090 crossref_primary_10_1109_TSMC_2025_3549599 crossref_primary_10_1109_TSMC_2021_3073429 crossref_primary_10_1109_TVT_2024_3491430 crossref_primary_10_1109_TASE_2023_3299275 crossref_primary_10_1109_TVT_2024_3432736 crossref_primary_10_1109_ACCESS_2021_3061255 crossref_primary_10_1109_TII_2025_3574365 crossref_primary_10_1016_j_neucom_2020_10_012 crossref_primary_10_1109_TASE_2024_3354830 crossref_primary_10_1109_TNNLS_2021_3094901 crossref_primary_10_1016_j_ins_2021_10_073 crossref_primary_10_1080_00207721_2022_2111238 crossref_primary_10_1002_rnc_6950 crossref_primary_10_1109_TCYB_2020_3044595 crossref_primary_10_1007_s10489_024_05631_7 crossref_primary_10_1002_oca_3001 crossref_primary_10_1016_j_cnsns_2024_107928 crossref_primary_10_1109_TCYB_2021_3121409 crossref_primary_10_1016_j_ins_2023_119577 crossref_primary_10_1007_s11071_023_08862_4 crossref_primary_10_1109_TASE_2025_3582898 crossref_primary_10_1109_TFUZZ_2022_3227993 crossref_primary_10_1109_TNNLS_2022_3153028 crossref_primary_10_1007_s11071_022_07970_x crossref_primary_10_1016_j_neucom_2023_126711 crossref_primary_10_1109_TSMC_2024_3450274 crossref_primary_10_1007_s12555_021_0210_1 crossref_primary_10_1016_j_eswa_2024_124573 crossref_primary_10_1109_TASE_2024_3368438 crossref_primary_10_1016_j_neucom_2022_07_072 crossref_primary_10_1002_asjc_3078 crossref_primary_10_1016_j_amc_2024_129059 crossref_primary_10_1002_acs_3980 crossref_primary_10_1016_j_neucom_2021_01_070 crossref_primary_10_1016_j_neucom_2021_04_133 crossref_primary_10_1109_ACCESS_2022_3166473 crossref_primary_10_1109_TFUZZ_2023_3302154 crossref_primary_10_1002_rnc_6452 crossref_primary_10_1109_TSMC_2020_3003368 crossref_primary_10_1109_TCYB_2021_3054626 crossref_primary_10_1016_j_ins_2023_119679 crossref_primary_10_1109_TNNLS_2021_3056444 crossref_primary_10_1016_j_jfranklin_2023_09_021 crossref_primary_10_1109_TCYB_2022_3164977 crossref_primary_10_1109_TNNLS_2020_2979174 crossref_primary_10_1109_TCYB_2023_3293466 crossref_primary_10_1109_ACCESS_2020_3043498 crossref_primary_10_1016_j_ast_2021_107204 crossref_primary_10_1016_j_neucom_2023_126965 crossref_primary_10_1109_ACCESS_2020_3043775 crossref_primary_10_1109_TFUZZ_2020_2966185 crossref_primary_10_1109_TCYB_2020_3002108 crossref_primary_10_1016_j_neucom_2021_01_061 crossref_primary_10_1109_TAES_2023_3292809 crossref_primary_10_1109_TETCI_2023_3303095 crossref_primary_10_1109_TCYB_2020_3027344 crossref_primary_10_1007_s10462_021_10118_9 crossref_primary_10_1109_TCYB_2019_2909704 |
| Cites_doi | 10.1109/TSMCB.2008.926614 10.1109/CDC.2012.6425820 10.1109/TCYB.2016.2523878 10.1109/TNNLS.2016.2614002 10.1109/TNNLS.2015.2472974 10.1109/TNN.2009.2027233 10.1109/TNNLS.2013.2251747 10.1109/JAS.2014.7004686 10.1109/TSMC.2017.2774602 10.1109/TNNLS.2015.2453320 10.1109/TNNLS.2015.2441712 10.1109/TIE.2016.2597763 10.1109/TNNLS.2016.2539366 10.1109/TNNLS.2012.2227339 10.1016/j.automatica.2010.02.018 10.1016/j.neunet.2009.03.008 10.1007/978-3-319-50815-3 10.1109/TSMC.2016.2592682 10.1109/TNNLS.2017.2773458 10.1016/j.automatica.2014.10.056 10.1109/TNNLS.2013.2247627 10.1016/j.automatica.2014.08.023 10.1109/TNNLS.2015.2511658 10.1016/j.automatica.2004.11.034 10.1109/JAS.2017.7510682 10.1109/TNNLS.2016.2541020 10.1049/iet-cta.2013.0253 10.1109/TNNLS.2016.2586303 10.1109/JAS.2016.7510262 10.1109/TNNLS.2016.2642128 10.1109/TNNLS.2013.2281663 10.1109/TNNLS.2012.2196708 10.1109/TNNLS.2013.2276571 10.1016/j.automatica.2017.03.013 10.1109/TAC.2007.904277 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2019.2899594 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 88 |
| ExternalDocumentID | 30892242 10_1109_TNNLS_2019_2899594 8667879 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Qatar National Research Fund grantid: NPRP9-466-1-103 funderid: 10.13039/100008982 – fundername: National Natural Science Foundation of China grantid: 61873350; 61503377; 61721091; 61625302; 61533017; U1501251 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-693f658d4b3b7f94c79f8f4d698b899800d2d9e6dd8afbf0b41fd8a0b91ba5f33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506609000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 21:19:59 EDT 2025 Sun Nov 30 04:12:35 EST 2025 Thu Jan 02 22:59:11 EST 2025 Sat Nov 29 01:40:02 EST 2025 Tue Nov 18 20:59:39 EST 2025 Wed Aug 27 06:28:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-693f658d4b3b7f94c79f8f4d698b899800d2d9e6dd8afbf0b41fd8a0b91ba5f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3353-2586 0000-0003-3715-4778 0000-0002-4366-5147 |
| PMID | 30892242 |
| PQID | 2333732408 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8667879 crossref_citationtrail_10_1109_TNNLS_2019_2899594 pubmed_primary_30892242 crossref_primary_10_1109_TNNLS_2019_2899594 proquest_journals_2333732408 proquest_miscellaneous_2194585906 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan. 2020-1-00 2020-Jan 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 lewis (ref1) 2013 ge (ref37) 2001 ref36 ref14 ref31 ref30 ref33 ref11 khalil (ref38) 2002; 3 ref32 ref10 ref2 ref39 ref17 ref16 ref19 ref18 ref24 ref23 franklin (ref40) 1986 ref26 ref25 ref20 lemmon (ref21) 2010 ref41 ref28 ref27 ref29 vamvoudakis (ref22) 2014; 1 ref7 ref9 ref4 ref3 ref6 ref5 lewis (ref8) 2013; 17 |
| References_xml | – ident: ref3 doi: 10.1109/TSMCB.2008.926614 – ident: ref20 doi: 10.1109/CDC.2012.6425820 – ident: ref27 doi: 10.1109/TCYB.2016.2523878 – ident: ref26 doi: 10.1109/TNNLS.2016.2614002 – year: 1986 ident: ref40 publication-title: Feedback Control of Dynamic Systems – ident: ref12 doi: 10.1109/TNNLS.2015.2472974 – ident: ref5 doi: 10.1109/TNN.2009.2027233 – ident: ref33 doi: 10.1109/TNNLS.2013.2251747 – volume: 1 start-page: 282 year: 2014 ident: ref22 article-title: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2014.7004686 – ident: ref35 doi: 10.1109/TSMC.2017.2774602 – ident: ref23 doi: 10.1109/TNNLS.2015.2453320 – ident: ref34 doi: 10.1109/TNNLS.2015.2441712 – ident: ref28 doi: 10.1109/TIE.2016.2597763 – ident: ref25 doi: 10.1109/TNNLS.2016.2539366 – ident: ref7 doi: 10.1109/TNNLS.2012.2227339 – start-page: 293 year: 2010 ident: ref21 publication-title: Event-triggered feedback in control estimation and optimization – ident: ref36 doi: 10.1016/j.automatica.2010.02.018 – ident: ref4 doi: 10.1016/j.neunet.2009.03.008 – year: 2001 ident: ref37 publication-title: Stable Adaptive Neural Network Control – volume: 3 year: 2002 ident: ref38 publication-title: Nonlinear Systems – ident: ref14 doi: 10.1007/978-3-319-50815-3 – ident: ref32 doi: 10.1109/TSMC.2016.2592682 – ident: ref15 doi: 10.1109/TNNLS.2017.2773458 – ident: ref11 doi: 10.1016/j.automatica.2014.10.056 – ident: ref10 doi: 10.1109/TNNLS.2013.2247627 – year: 2013 ident: ref1 publication-title: Optimal Control – ident: ref13 doi: 10.1016/j.automatica.2014.08.023 – ident: ref16 doi: 10.1109/TNNLS.2015.2511658 – ident: ref2 doi: 10.1016/j.automatica.2004.11.034 – volume: 17 year: 2013 ident: ref8 publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control – ident: ref18 doi: 10.1109/JAS.2017.7510682 – ident: ref29 doi: 10.1109/TNNLS.2016.2541020 – ident: ref39 doi: 10.1049/iet-cta.2013.0253 – ident: ref24 doi: 10.1109/TNNLS.2016.2586303 – ident: ref17 doi: 10.1109/JAS.2016.7510262 – ident: ref31 doi: 10.1109/TNNLS.2016.2642128 – ident: ref41 doi: 10.1109/TNNLS.2013.2281663 – ident: ref6 doi: 10.1109/TNNLS.2012.2196708 – ident: ref9 doi: 10.1109/TNNLS.2013.2276571 – ident: ref30 doi: 10.1016/j.automatica.2017.03.013 – ident: ref19 doi: 10.1109/TAC.2007.904277 |
| SSID | ssj0000605649 |
| Score | 2.6314116 |
| Snippet | This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 76 |
| SubjectTerms | Adaptive control Adaptive dynamic programming (ADP) Artificial neural networks Computer simulation Dynamic programming event-triggered Indexes Learning systems Lower bounds Mathematical model neural network (NN) Neural networks Nonlinear control Nonlinear systems Optimal control Performance analysis performance guarantee Upper bounds |
| Title | Event-Triggered Optimal Control With Performance Guarantees Using Adaptive Dynamic Programming |
| URI | https://ieeexplore.ieee.org/document/8667879 https://www.ncbi.nlm.nih.gov/pubmed/30892242 https://www.proquest.com/docview/2333732408 https://www.proquest.com/docview/2194585906 |
| Volume | 31 |
| WOSCitedRecordID | wos000506609000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61FQcuFFoegVIZiRu4tdeO7TlWpVUPVYhEEDmx2l2PSyWaVE3C78f2PhASVOptJdu71n5jz4w9Mx_Ae9lIh5bGXJtKc01NxSsXkJOtMWo_8q7KicKXdjJx8zlOt-DjkAtDRDn4jI7SY77L98tmk47Kjp2JW6vFbdi21rS5WsN5ioh2ucnWbiFNwQtl532OjMDj2WRy-SUFcuFR8jDGmPh4lHAYNVjxl0rKHCv_Nzez2jnffdiEn8KTzrxkJ608PIMtWuzBbk_dwLqVvA_fz1KcI59F3_wqsXWyz3HruIkjT9vQdfbtev2DTf9kFbAkSwkFWrEcZsBOfHWb9kr2qSW1Z9M21OsmNj6Hr-dns9ML3lEt8EaN5ZobVCHaIl7XqrYBdWMxuKC9QVcnj0wIX3gk4yN2oQ6i1jLER1GjrKtxUOoF7CyWC3oFzKWKgk0lPQmvKaCzVhmyIRSeiuDMCGT_t8umq0Oe6DB-ltkfEVhmsMoEVtmBNYIPw5jbtgrHvb33ExRDzw6FERz0oJbdQl2VhVLKpqKEbgTvhua4xNK9SbWg5Sb2kaijV4Uizv1lKwzDu3sZev3vb76Bx0Vy0POZzQHsrO829BYeNb_W16u7wyjHc3eY5fg3Xg_t8A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcReGDA-CgOMxBt4c2w39j1OY9MQJVSiiD4RJbENk7Z2Wlv-fnzOB0ICJN4i2U6s_M6-O_vufgCvsiazaPyY67zSXPum4pUNyL2pMWo_72yVEoUnpijsfI7TLXgz5MJ471PwmT-gx3SX75bNho7KDm0et1aDN-AmMWdhm601nKiIaJnnyd6VWS65VGbeZ8kIPJwVxeQThXLhAfkYYyRGHiUsRh0mf1NKiWXl7wZnUjynu_835btwpzMw2VErEfdgyy_uw25P3sC6tbwHX08o0pHPonf-jfg62ce4eVzGkcdt8Dr7cr7-zqa_8goYSRPh4FcsBRqwI1dd0W7J3ra09mzaBntdxsYH8Pn0ZHZ8xjuyBd6ocbbmOaoQrRGna1WbgLoxGGzQLkdbk08mhJMOfe4ieqEOotZZiI-ixqyuxkGph7C9WC78Y2CWago2Vea8cNoHtMao3JsQpPMy2HwEWf-3y6arRE6EGBdl8kgElgmsksAqO7BG8HoYc9XW4fhn7z2CYujZoTCC_R7Usluqq1IqpQyVJbQjeDk0x0VGNyfVwi83sU-GOvpVKOLcH7XCMLy7l6Enf_7mC7h9NvswKSfvivdPYUeSu55OcPZhe3298c_gVvNjfb66fp6k-SddyPBX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Optimal+Control+With+Performance+Guarantees+Using+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Luo%2C+Biao&rft.au=Yang%2C+Yin&rft.au=Liu%2C+Derong&rft.au=Wu%2C+Huai-Ning&rft.date=2020-01-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=1&rft.spage=76&rft.epage=88&rft_id=info:doi/10.1109%2FTNNLS.2019.2899594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2899594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |