Classification of normal and abnormal heart by classifying PCG signal using MFCC coefficients and CGP-ANN classifier

Globally, A leading cause of death is heart disease and a serious public health concern. The anomalies in heart sound appears before the heart disease symptoms. The sounds are type of auscultation, which is a process dealing with sounds in a body that generates due to mechanical vibrations of organs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mehran University research journal of engineering and technology Ročník 42; číslo 3; s. 160 - 166
Hlavní autori: Israr, Muhammad, Zia, Muhammad, Rehman, Naveed Ur, Ullah, Imran, Khan, Khushal
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Mehran University of Engineering and Technology 01.07.2023
Predmet:
ISSN:0254-7821, 2413-7219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Globally, A leading cause of death is heart disease and a serious public health concern. The anomalies in heart sound appears before the heart disease symptoms. The sounds are type of auscultation, which is a process dealing with sounds in a body that generates due to mechanical vibrations of organs, Auscultation is a potential method in medical science to detect abnormalities in heart sounds and in case of suspicion The patient follows up with a referral for other evaluations, such as an electrocardiogram. In medical sciences early detection of symptoms are of major importance, this research work is a good step toward the detection of abnormalities in heart before symptom appearing by processing the phonocardiogram (PCG) signal. In this paper PCG signals are classified by utilizing the features of Mel frequency cepstral coefficients (MFCC) through Cartesian Genetic Programming - Artificial Network (CGP-ANN) Classifier. The diagnostic accuracy of proposed methodology is found 99.50% which is more than other classifiers like Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy of model as compared to other models can prove the performance superiority of the proposed system.
AbstractList Globally, A leading cause of death is heart disease and a serious public health concern. The anomalies in heart sound appears before the heart disease symptoms. The sounds are type of auscultation, which is a process dealing with sounds in a body that generates due to mechanical vibrations of organs, Auscultation is a potential method in medical science to detect abnormalities in heart sounds and in case of suspicion The patient follows up with a referral for other evaluations, such as an electrocardiogram. In medical sciences early detection of symptoms are of major importance, this research work is a good step toward the detection of abnormalities in heart before symptom appearing by processing the phonocardiogram (PCG) signal. In this paper PCG signals are classified by utilizing the features of Mel frequency cepstral coefficients (MFCC) through Cartesian Genetic Programming--Artificial Network (CGP-ANN) Classifier. The diagnostic accuracy of proposed methodology is found 99.50% which is more than other classifiers like Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy of model as compared to other models can prove the performance superiority of the proposed system. KEYWORDS PCG ECG MFCC CGP-ANN Murmur Genotype
Globally, A leading cause of death is heart disease and a serious public health concern. The anomalies in heart sound appears before the heart disease symptoms. The sounds are type of auscultation, which is a process dealing with sounds in a body that generates due to mechanical vibrations of organs, Auscultation is a potential method in medical science to detect abnormalities in heart sounds and in case of suspicion The patient follows up with a referral for other evaluations, such as an electrocardiogram. In medical sciences early detection of symptoms are of major importance, this research work is a good step toward the detection of abnormalities in heart before symptom appearing by processing the phonocardiogram (PCG) signal. In this paper PCG signals are classified by utilizing the features of Mel frequency cepstral coefficients (MFCC) through Cartesian Genetic Programming--Artificial Network (CGP-ANN) Classifier. The diagnostic accuracy of proposed methodology is found 99.50% which is more than other classifiers like Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy of model as compared to other models can prove the performance superiority of the proposed system.
Audience Academic
Author Rehman, Naveed Ur
Ullah, Imran
Khan, Khushal
Zia, Muhammad
Israr, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Israr
  fullname: Israr, Muhammad
– sequence: 2
  givenname: Muhammad
  surname: Zia
  fullname: Zia, Muhammad
– sequence: 3
  givenname: Naveed Ur
  surname: Rehman
  fullname: Rehman, Naveed Ur
– sequence: 4
  givenname: Imran
  surname: Ullah
  fullname: Ullah, Imran
– sequence: 5
  givenname: Khushal
  surname: Khan
  fullname: Khan, Khushal
BookMark eNp1kU9r3DAQxUVIIds0H6A3Q8_e6I8l2cfFNJtAmubQnsV4PNoq2FaxnMN--yq72UNCyhzEPL3fg-F9ZudTnIixr4KvpdS1uB6faRFNLddScbUW5oytZCVUaaVoztmKS12Vtpbigl2l9MQ5F0ZXRqkVW9oBUgo-ICwhTkX0xRTnEYYCpr6A7nX5QzAvRbcv8Gjfh2lXPLbbIoXdlP-f04vw46ZtC4zkc1ygaUmHkHb7WG4eHk5ooPkL--RhSHT1-l6y3zfff7W35f3P7V27uS9RabGUhldS971CqQgBpZQcuCVT94IMeWs9R6NQVNo3DdUdeFIgq0Z3svei6tUluzvm9hGe3N85jDDvXYTgDkKcdy6fFXAgp02D3lKFaEylDQIB6E7rRnS28T3lrG_HrB1ke5h8XGbAMSR0G6sbI6wSdXatP3Dl6WkMmFvzIetvAHsEcI4pzeQdhuVQRQbD4AR3h4rdqWL3UrETJpPiHXk68P_MP_Rzq-U
CitedBy_id crossref_primary_10_32604_cmc_2024_049276
crossref_primary_10_1016_j_dib_2025_111433
ContentType Journal Article
Copyright COPYRIGHT 2023 Mehran University of Engineering and Technology
Copyright_xml – notice: COPYRIGHT 2023 Mehran University of Engineering and Technology
DBID AAYXX
CITATION
DOA
DOI 10.22581/muet1982.2303.16
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2413-7219
EndPage 166
ExternalDocumentID oai_doaj_org_article_569cf7e4cc66456caeaa5b5591b79fde
A759617318
10_22581_muet1982_2303_16
GroupedDBID 188
5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
ITC
KQ8
OK1
RIG
ID FETCH-LOGICAL-c351t-60425dd3c23ecac2220a07e68d1e6ef77f0c63c145f99e8bafe3a2495b2df14d3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042291100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-7821
IngestDate Fri Oct 03 12:53:26 EDT 2025
Mon Oct 20 21:47:19 EDT 2025
Mon Oct 20 17:22:12 EDT 2025
Sat Nov 29 01:33:27 EST 2025
Tue Nov 18 22:03:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-60425dd3c23ecac2220a07e68d1e6ef77f0c63c145f99e8bafe3a2495b2df14d3
OpenAccessLink https://doaj.org/article/569cf7e4cc66456caeaa5b5591b79fde
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_569cf7e4cc66456caeaa5b5591b79fde
gale_infotracmisc_A759617318
gale_infotracacademiconefile_A759617318
crossref_citationtrail_10_22581_muet1982_2303_16
crossref_primary_10_22581_muet1982_2303_16
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Mehran University research journal of engineering and technology
PublicationYear 2023
Publisher Mehran University of Engineering and Technology
Publisher_xml – name: Mehran University of Engineering and Technology
SSID ssj0001654633
Score 2.2382877
Snippet Globally, A leading cause of death is heart disease and a serious public health concern. The anomalies in heart sound appears before the heart disease...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 160
SubjectTerms Analysis
Diagnosis
Electrocardiogram
Electrocardiography
Heart diseases
Neural networks
Title Classification of normal and abnormal heart by classifying PCG signal using MFCC coefficients and CGP-ANN classifier
URI https://doaj.org/article/569cf7e4cc66456caeaa5b5591b79fde
Volume 42
WOSCitedRecordID wos001042291100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2413-7219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001654633
  issn: 0254-7821
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yeNCD-BPfukoOgiDUbZo2aY7Psm-9-HgHhb2FZJKIsPbJ2l3wv3cm6VvqZb14bDMp6ZdJZqadzMfYW-LXlkl3lQfhqjY0puq9UlXUKtV9SgKgz2QTervtLy7MbkH1RTlhpTxwAe60UwaSji2AUmjswUXnOo9-sPDapBBp9621WQRT-esKndEpPPIYAVVoBkX5pYnq24vTH9dxwmi7oTRo-YG4zhdGKdfun3foha3ZPGaPZieRr8vgnrB7cXzKHi5KBz5jU2azpDyfDC3fJz6S-3nJ3Ri48_MF8VVP3P_mUMTpUBPfDeec8jawndLev_HPm2HgsI-5nARlVuSHDOe7ar3dHrqi_XzOvm7OvgyfqplBoQLZialStCRDkNDICA7QF6hdraPqg4gqJq1TDUqCaLtkTOy9S1E6YqP2TUiiDfIFOxr3Y3zJuDIGVB0wvNJ167vgEH_RgI8Rw-uQ5IrVBwgtzOXFieXi0mKYkVG3B9QtoW6FWrH3t11-ltoadwl_pHm5FaSy2PkGKoudlcX-S1lW7B3NqqXFi4NDSMoZBHxFKoNl17oz6NLhPrdiJ39J4qKDRfPx_xjNK_aAyOtL8u8JO5quruNrdh9upu-_rt5khf4DYpT5bw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+normal+and+abnormal+heart+by+classifying+PCG+signal+using+MFCC+coefficients+and+CGP-ANN+classifier&rft.jtitle=Mehran+University+research+journal+of+engineering+and+technology&rft.au=Muhammad+Israr&rft.au=Muhammad+Zia&rft.au=Naveed+Ur+Rehman&rft.au=Imran+Ullah&rft.date=2023-07-01&rft.pub=Mehran+University+of+Engineering+and+Technology&rft.issn=0254-7821&rft.eissn=2413-7219&rft.volume=42&rft.issue=3&rft.spage=160&rft.epage=166&rft_id=info:doi/10.22581%2Fmuet1982.2303.16&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_569cf7e4cc66456caeaa5b5591b79fde
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-7821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-7821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-7821&client=summon