Self-Supervised Deep Multiview Spectral Clustering

Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 3; S. 1 - 10
Hauptverfasser: Zong, Linlin, Miao, Faqiang, Zhang, Xianchao, Liang, Wenxin, Xu, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.
AbstractList Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.
Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.
Author Zhang, Xianchao
Xu, Bo
Zong, Linlin
Miao, Faqiang
Liang, Wenxin
Author_xml – sequence: 1
  givenname: Linlin
  orcidid: 0000-0002-1116-1016
  surname: Zong
  fullname: Zong, Linlin
  organization: School of Software, Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Faqiang
  surname: Miao
  fullname: Miao, Faqiang
  organization: Institute of Farmland Irrigation of CAAS, Xinxiang, China
– sequence: 3
  givenname: Xianchao
  orcidid: 0000-0002-0180-3740
  surname: Zhang
  fullname: Zhang, Xianchao
  organization: School of Software, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Wenxin
  surname: Liang
  fullname: Liang, Wenxin
  organization: School of Software, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Bo
  orcidid: 0000-0001-5453-978X
  surname: Xu
  fullname: Xu, Bo
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35944001$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwkAUhicGI4i8gCaGxI2b4tw7XRq8JogLMHE3aYdTM6S0dabF-PYOgixYOJszi-8_l-8UdcqqBITOCR4RgpOb-XQ6mY0opnTESCJihY9QjxJJI8qU6uz_8XsXDbxf4vAkFpInJ6jLRMI5xqSH6AyKPJq1Nbi19bAY3gHUw5e2aOzawtdwVoNpXFoMx0XrG3C2_DhDx3laeBjsah-9PdzPx0_R5PXxeXw7iQwTpIlEJpXkAgAWSU7jjHEqY8NjyQnNkkwYnqXSpJLRPMcqVyKFTAkOSppcGsNZH11v-9au-mzBN3plvYGiSEuoWq9pjDEjTGAa0KsDdFm1rgzbaZowJkm4XQXqcke12QoWunZ2lbpv_WcjAHQLGFd57yDfIwTrjXX9a11vrOud9RBSByFjm7SxVRm82eL_6MU2aoOl_axECUZJzH4AkOeNWg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2025_3543219
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1109_TKDE_2024_3487907
crossref_primary_10_1109_JSTARS_2024_3408817
Cites_doi 10.1609/aaai.v32i1.11617
10.1109/JSTSP.2018.2875385
10.1016/j.knosys.2019.06.006
10.24963/ijcai.2019/356
10.1109/ICCV.2015.185
10.5555/2980539.2980649
10.1609/aaai.v31i1.10867
10.1609/aaai.v29i1.9552
10.1109/ICME46284.2020.9102921
10.1109/CVPR.2011.5995740
10.1609/aaai.v32i1.11625
10.1016/j.neunet.2018.08.011
10.1145/1871437.1871489
10.1007/s12530-018-9235-y
10.1145/860435.860485
10.1109/ICDM.2018.00174
10.1007/978-3-642-15567-3_1
10.1016/j.neucom.2015.01.017
10.1016/j.ins.2020.05.073
10.24963/ijcai.2019/546
10.1109/TBIOM.2019.2947264
10.1109/CVPR.2016.556
10.24963/ijcai.2017/243
10.1109/CVPR.2019.00562
10.1016/j.ins.2020.12.073
10.1016/j.neunet.2021.02.022
10.1109/CVPR.2005.16
10.5555/1756006.1953024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3195780
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10
ExternalDocumentID 35944001
10_1109_TNNLS_2022_3195780
9853217
Genre orig-research
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Novel Software Technology, Nanjing University
  grantid: KFKT2022B41
– fundername: National Natural Science Foundation of China
  grantid: 62006034; 61806034; 61876028; 61972065
  funderid: 10.13039/501100001809
– fundername: Dalian High-level Talent Innovation Support Plan
  grantid: 2021RQ056
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 2021-BS-067
  funderid: 10.13039/501100005047
– fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT21RC; DUT19RC
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840476600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 06:35:54 EDT 2025
Mon Jun 30 05:58:19 EDT 2025
Thu Jul 24 03:24:05 EDT 2025
Sat Nov 29 01:40:21 EST 2025
Tue Nov 18 22:30:35 EST 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0180-3740
0000-0001-5453-978X
0000-0002-1116-1016
PMID 35944001
PQID 2933610068
PQPubID 85436
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3195780
ieee_primary_9853217
proquest_miscellaneous_2700313502
pubmed_primary_35944001
proquest_journals_2933610068
crossref_citationtrail_10_1109_TNNLS_2022_3195780
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Andrew (ref10)
ref31
ref11
ref33
ref32
ref17
ref16
ref19
ref18
Alwassel (ref25) 2019
Wang (ref9)
Xie (ref30)
Cai (ref1)
Shaham (ref27)
Schütze (ref38)
ref24
ref23
ref26
Sun (ref3)
ref20
Peng (ref6); 97
ref22
ref21
ref28
ref29
ref7
Ngiam (ref8)
ref4
ref5
Cai (ref2) 2020; 536
References_xml – ident: ref5
  doi: 10.1609/aaai.v32i1.11617
– ident: ref11
  doi: 10.1109/JSTSP.2018.2875385
– ident: ref22
  doi: 10.1016/j.knosys.2019.06.006
– ident: ref16
  doi: 10.24963/ijcai.2019/356
– ident: ref34
  doi: 10.1109/ICCV.2015.185
– ident: ref26
  doi: 10.5555/2980539.2980649
– ident: ref14
  doi: 10.1609/aaai.v31i1.10867
– ident: ref19
  doi: 10.1609/aaai.v29i1.9552
– start-page: 1
  volume-title: Proc. ICML
  ident: ref8
  article-title: Multimodal deep learning
– start-page: 1
  volume-title: Proc. ICML
  ident: ref10
  article-title: Deep canonical correlation analysis
– ident: ref17
  doi: 10.1109/ICME46284.2020.9102921
– ident: ref33
  doi: 10.1109/CVPR.2011.5995740
– ident: ref4
  doi: 10.1609/aaai.v32i1.11625
– start-page: 478
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Unsupervised deep embedding for clustering analysis
– ident: ref21
  doi: 10.1016/j.neunet.2018.08.011
– ident: ref18
  doi: 10.1145/1871437.1871489
– ident: ref12
  doi: 10.1007/s12530-018-9235-y
– ident: ref36
  doi: 10.1145/860435.860485
– start-page: 1
  volume-title: Proc. ICML
  ident: ref9
  article-title: On deep multi-view representation learning
– ident: ref15
  doi: 10.1109/ICDM.2018.00174
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref27
  article-title: SpectralNet: Spectral clustering using deep neural networks
– ident: ref28
  doi: 10.1007/978-3-642-15567-3_1
– ident: ref20
  doi: 10.1016/j.neucom.2015.01.017
– year: 2019
  ident: ref25
  article-title: Self-supervised learning by cross-modal audio-video clustering
  publication-title: arXiv:1911.12667
– volume: 536
  start-page: 171
  year: 2020
  ident: ref2
  article-title: Semi-supervised multi-view clustering based on orthonormality-constrained nonnegative matrix factorization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.073
– start-page: 1001
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref3
  article-title: Self-supervised deep multi-view subspace clustering
– ident: ref13
  doi: 10.24963/ijcai.2019/546
– ident: ref24
  doi: 10.1109/TBIOM.2019.2947264
– ident: ref32
  doi: 10.1109/CVPR.2016.556
– start-page: 260
  volume-title: Proc. Int. Commun. Assoc. Comput. Mach. Conf.
  ident: ref38
  article-title: Introduction to information retrieval
– ident: ref31
  doi: 10.24963/ijcai.2017/243
– volume: 97
  start-page: 5092
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref6
  article-title: COMIC: Multi-view clustering without parameter selection
– start-page: 1
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  ident: ref1
  article-title: Multi-view K-means clustering on big data
– ident: ref23
  doi: 10.1109/CVPR.2019.00562
– ident: ref35
  doi: 10.1016/j.ins.2020.12.073
– ident: ref7
  doi: 10.1016/j.neunet.2021.02.022
– ident: ref29
  doi: 10.1109/CVPR.2005.16
– ident: ref37
  doi: 10.5555/1756006.1953024
SSID ssj0000605649
Score 2.484183
Snippet Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Clustering
Clustering algorithms
Commonality
Constraint propagation network
Data mining
Decoding
deep multiview
Feature extraction
Matrix decomposition
Neural networks
self-supervised
Software
spectral clustering
Task analysis
Title Self-Supervised Deep Multiview Spectral Clustering
URI https://ieeexplore.ieee.org/document/9853217
https://www.ncbi.nlm.nih.gov/pubmed/35944001
https://www.proquest.com/docview/2933610068
https://www.proquest.com/docview/2700313502
Volume 35
WOSCitedRecordID wos000840476600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC6S4MGLiUbNmBhG8KZt-v04SjR4kEXYCHsbpnu6QVh2l-yOv9_qngcIKngbmJ6Zpqp66quurvoA3tLUtW0bA3GSJiK9YMQbL4llLERvWsO9LGQTZrGwq5X7dgTv51qYGGM5fBY_5MuSy--2oc9bZTcOfQtC6GM4NkYPtVrzfgpFXK4L2uVMc8KFWU01MtTd3C8WX5cYDXKOQapDK80McEI5iSbMfnNJhWPl73CzuJ270_-b8Bk8GeFl_XGwh6dwFDfP4HSibqjHlXwOfBnXiSz7Xf5V7GNXf4pxV5dq3JwrqDMtfd4DqW_XfW6lgA7uOXy_-3x_-4WM9AkkCMUORHlttVQ4qc4lbrxAZ2yCNFoy7p1XQfpWh1YLnhK1yao2eqtktDokHYIUL-Bks93EC6iDEL7D4EwHRB-URpsUBhpBdCF2SXWsAjZJsAljb_FMcbFuSoxBXVMU0GQFNKMCKng3P7MbOmv8c_R5Fu88cpRsBVeToppx8e0bRDACUSHVtoI3821cNjkX0m7itscxpnStVJRX8HJQ8PzuyS5e_fmbl_AYZyaHg2hXcHJ46ONreBR-Hn7sH67RNlf2utjmL2n13MU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFfTFqvUjtmoE33Tb_f54LK2l4hmEO-HeQnazC8Jxd_Qu_v3ubj5AUKFvgWySZWY285udnfkBfMChbZrGO2Q4DohbRpBVliNNiPNWNYpanskmVFXp5dJ8P4BPUy2M9z4fPvNn6TLn8tuN69JW2bmJviVC6HtwX3BOcV-tNe2o4IjMZca7lEiKKFPLsUoGm_NFVc3mMR6kNIapJtpp4oBjwvBoxOQPp5RZVv4NOLPjuT6625SfwOMBYJYXvUU8hQO_fgZHI3lDOazlY6Bzvwpo3m3Tz2Ln2_LK-22Z63FTtqBMxPRpF6S8XHWpmUJ0cc_hx_XnxeUNGggUkGOC7JGwUksu4qRaE6iyLLpj5biSnFBrrHDcNtI1ktEQsA5aNN5qwb2WLkjnOHsBh-vN2r-C0jFm2xieSRfxB8ZeBxFDDcda59sgWlIAGSVYu6G7eCK5WNU5ysCmzgqokwLqQQEFfJye2fa9Nf47-jiJdxo5SLaA01FR9bD8dnXEMCziQix1Ae-n23HhpGxIs_abLo5RuW-lwLSAl72Cp3ePdvH67998Bw9vFt9m9exL9fUEHsVZ8v5Y2ikc7m87_wYeuF_7n7vbt9lCfwPb7N8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Deep+Multiview+Spectral+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zong%2C+Linlin&rft.au=Miao%2C+Faqiang&rft.au=Zhang%2C+Xianchao&rft.au=Liang%2C+Wenxin&rft.date=2024-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=4299&rft.epage=4308&rft_id=info:doi/10.1109%2FTNNLS.2022.3195780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2022_3195780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon