Fixed-Time Leader-Follower Consensus of Networked Nonlinear Systems via Event/Self-Triggered Control
This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zen...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 31; číslo 11; s. 5029 - 5037 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zeno behavior. Then, two new self-triggered control strategies are presented to avoid continuous triggering condition monitoring. Moreover, under the proposed self-triggered control strategies, a strictly positive minimal triggering interval of each follower is given to exclude Zeno behavior. Compared with the existing fixed-time event-triggered results, we propose two new self-triggered control strategies, and the nonlinear term is more general. Finally, the performances of the consensus tracking algorithms are illustrated by a simulation example. |
|---|---|
| AbstractList | This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zeno behavior. Then, two new self-triggered control strategies are presented to avoid continuous triggering condition monitoring. Moreover, under the proposed self-triggered control strategies, a strictly positive minimal triggering interval of each follower is given to exclude Zeno behavior. Compared with the existing fixed-time event-triggered results, we propose two new self-triggered control strategies, and the nonlinear term is more general. Finally, the performances of the consensus tracking algorithms are illustrated by a simulation example.This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zeno behavior. Then, two new self-triggered control strategies are presented to avoid continuous triggering condition monitoring. Moreover, under the proposed self-triggered control strategies, a strictly positive minimal triggering interval of each follower is given to exclude Zeno behavior. Compared with the existing fixed-time event-triggered results, we propose two new self-triggered control strategies, and the nonlinear term is more general. Finally, the performances of the consensus tracking algorithms are illustrated by a simulation example. This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zeno behavior. Then, two new self-triggered control strategies are presented to avoid continuous triggering condition monitoring. Moreover, under the proposed self-triggered control strategies, a strictly positive minimal triggering interval of each follower is given to exclude Zeno behavior. Compared with the existing fixed-time event-triggered results, we propose two new self-triggered control strategies, and the nonlinear term is more general. Finally, the performances of the consensus tracking algorithms are illustrated by a simulation example. |
| Author | Sun, Changyin Liu, Jian Zhang, Yanling Yu, Yao |
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-5622-5183 surname: Liu fullname: Liu, Jian email: bkliujian@163.com organization: School of Automation, Southeast University, Nanjing, China – sequence: 2 givenname: Yanling surname: Zhang fullname: Zhang, Yanling email: yanlzhang@ustb.edu.cn organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Yao orcidid: 0000-0002-2619-2843 surname: Yu fullname: Yu, Yao email: yuyao@ustb.edu.cn organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Changyin orcidid: 0000-0001-9269-334X surname: Sun fullname: Sun, Changyin email: cysun@seu.edu.cn organization: School of Automation, Southeast University, Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31905152$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9vEzEQxS1UREvpFwAJrcSFy6b-v_YRRQ0gReGQIHGzvLuzlYvXLvZuS789Dgk59MBcZg6_N_M07zU6CzEAQm8JXhCC9fVus1lvFxQTvaBaNFjqF-iCEklrypQ6O83Nj3N0lfMdLiWxkFy_QueMaCyIoBeoX7nf0Nc7N0K1BttDqlfR-_gIqVrGkCHkOVdxqDYwPcb0E_pqE4N3AWyqtk95gjFXD85WNw8Qpust-KHeJXd7C6mgZcOUon-DXg7WZ7g69kv0fXWzW36p198-f11-WtcdE2SqhaYNU5ZzKVgjKVihO86x7iynVnJCBmlbYgXrZIt71RIColUwMFyIBhN2iT4e9t6n-GuGPJnR5Q68twHinA1ljFPOaIML-uEZehfnFIo7Q7lQjcAUs0K9P1JzO0Jv7pMbbXoy__5XAHoAuhRzTjCcEILNPifzNyezz8kccyoi9UzUuclObv8s6_z_pe8OUgcAp1tKF7uqYX8A2Iyerg |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_3390_s22239537 crossref_primary_10_1109_TNNLS_2021_3057482 crossref_primary_10_1016_j_isatra_2022_03_016 crossref_primary_10_1016_j_neunet_2024_106808 crossref_primary_10_1109_TCSI_2021_3060789 crossref_primary_10_1109_TSMC_2025_3573704 crossref_primary_10_1109_TSMC_2021_3051156 crossref_primary_10_1016_j_neucom_2021_08_081 crossref_primary_10_1109_TSMC_2024_3490659 crossref_primary_10_1088_1742_6596_2891_10_102004 crossref_primary_10_1002_rnc_7285 crossref_primary_10_1038_s41598_022_12634_2 crossref_primary_10_1109_ACCESS_2023_3258547 crossref_primary_10_1109_TCSI_2021_3109454 crossref_primary_10_1016_j_jfranklin_2024_107241 crossref_primary_10_1016_j_ins_2024_120243 crossref_primary_10_1002_rnc_6358 crossref_primary_10_1049_cth2_12056 crossref_primary_10_1109_JAS_2021_1003916 crossref_primary_10_1109_TSMC_2023_3328001 crossref_primary_10_1007_s11063_021_10509_7 crossref_primary_10_1016_j_ast_2025_110741 crossref_primary_10_1007_s40747_021_00334_9 crossref_primary_10_1016_j_fraope_2023_100054 crossref_primary_10_1109_JAS_2022_105503 crossref_primary_10_1007_s00521_024_10918_4 crossref_primary_10_1016_j_jfranklin_2021_10_010 crossref_primary_10_1002_rnc_70094 crossref_primary_10_1007_s11432_024_4355_1 crossref_primary_10_1109_TCNS_2023_3280457 crossref_primary_10_1016_j_isatra_2025_06_002 crossref_primary_10_1109_TCSI_2022_3175713 crossref_primary_10_1109_TNNLS_2022_3166531 crossref_primary_10_1109_TSMC_2023_3341847 crossref_primary_10_1088_1674_1056_aceeeb crossref_primary_10_1016_j_isatra_2023_03_010 crossref_primary_10_1016_j_neucom_2022_04_001 crossref_primary_10_1016_j_neucom_2024_128954 crossref_primary_10_1109_TCNS_2023_3274700 crossref_primary_10_1002_rnc_6182 crossref_primary_10_1016_j_cnsns_2023_107662 crossref_primary_10_1109_JSYST_2023_3262510 crossref_primary_10_1109_TCSI_2021_3071034 crossref_primary_10_1007_s12555_023_0633_y crossref_primary_10_1080_00207179_2024_2446850 crossref_primary_10_1016_j_cnsns_2025_108828 crossref_primary_10_1109_TASE_2025_3532350 crossref_primary_10_1016_j_jfranklin_2023_07_013 crossref_primary_10_1016_j_neucom_2025_130324 crossref_primary_10_1007_s11768_020_0011_8 crossref_primary_10_1049_iet_cta_2020_0393 crossref_primary_10_1007_s12555_020_0792_z crossref_primary_10_1016_j_neucom_2022_02_081 crossref_primary_10_1109_JAS_2023_123201 crossref_primary_10_1007_s11431_024_2715_5 crossref_primary_10_1007_s40815_021_01083_0 crossref_primary_10_1016_j_ins_2022_06_079 crossref_primary_10_1016_j_oceaneng_2022_113422 crossref_primary_10_1007_s11424_022_1036_5 crossref_primary_10_3390_sym14071368 crossref_primary_10_1109_TSMC_2023_3309867 crossref_primary_10_1007_s40747_024_01436_w crossref_primary_10_1016_j_neucom_2021_03_126 crossref_primary_10_1016_j_neucom_2021_08_140 crossref_primary_10_1049_iet_cta_2019_1132 crossref_primary_10_1016_j_oceaneng_2023_116490 crossref_primary_10_1109_TCNS_2022_3233927 crossref_primary_10_1016_j_neunet_2023_06_032 crossref_primary_10_1016_j_amc_2024_128955 crossref_primary_10_1109_TSMC_2021_3063117 crossref_primary_10_1109_TCSI_2022_3164552 crossref_primary_10_1109_TCSII_2021_3128624 crossref_primary_10_1108_AA_10_2019_0178 crossref_primary_10_1109_TCSII_2021_3126857 crossref_primary_10_1109_TSMC_2021_3103013 crossref_primary_10_1155_2021_9028591 crossref_primary_10_1007_s40815_024_01786_0 crossref_primary_10_1016_j_neucom_2021_05_088 crossref_primary_10_1016_j_jfranklin_2021_09_023 crossref_primary_10_1016_j_neucom_2020_05_065 crossref_primary_10_1016_j_isatra_2022_03_005 crossref_primary_10_1109_TIV_2023_3237790 crossref_primary_10_1002_rnc_7691 crossref_primary_10_1109_TIV_2023_3306802 crossref_primary_10_1007_s11432_019_2815_7 crossref_primary_10_1016_j_isatra_2022_01_023 crossref_primary_10_1109_TSMC_2021_3051271 crossref_primary_10_1109_TASE_2025_3578418 crossref_primary_10_1016_j_sysconle_2023_105711 crossref_primary_10_1109_TCSII_2022_3217784 crossref_primary_10_1016_j_jfranklin_2022_12_010 crossref_primary_10_1109_TCYB_2021_3053627 crossref_primary_10_1007_s12555_022_0630_6 crossref_primary_10_1016_j_ins_2023_119471 crossref_primary_10_1109_JAS_2023_123444 crossref_primary_10_1080_00207179_2021_1916838 crossref_primary_10_1016_j_amc_2025_129630 crossref_primary_10_1109_ACCESS_2023_3262284 crossref_primary_10_1007_s11071_021_07152_1 crossref_primary_10_1109_TCYB_2020_3035358 crossref_primary_10_1002_asjc_3092 crossref_primary_10_1109_TCYB_2020_2999199 crossref_primary_10_1109_TSMC_2022_3146191 crossref_primary_10_1109_TASE_2023_3318832 crossref_primary_10_1109_JIOT_2025_3554098 crossref_primary_10_1007_s11071_025_11178_0 crossref_primary_10_1007_s12555_021_0144_7 crossref_primary_10_1007_s12555_021_0909_z crossref_primary_10_1049_cth2_12136 crossref_primary_10_1109_TIE_2022_3176242 crossref_primary_10_1109_TNSE_2023_3335298 crossref_primary_10_1109_TSMC_2025_3560947 crossref_primary_10_1007_s11071_021_06612_y crossref_primary_10_1109_TCYB_2020_3034013 crossref_primary_10_1371_journal_pone_0293424 crossref_primary_10_1016_j_jfranklin_2021_07_055 crossref_primary_10_1109_TNNLS_2022_3174416 crossref_primary_10_3390_app12157580 crossref_primary_10_1016_j_isatra_2021_10_006 crossref_primary_10_1016_j_cnsns_2022_106677 crossref_primary_10_1007_s11063_020_10374_w crossref_primary_10_1631_FITEE_2000145 crossref_primary_10_1016_j_jfranklin_2022_05_041 crossref_primary_10_1109_TNNLS_2022_3153028 crossref_primary_10_1109_TSMC_2023_3272315 crossref_primary_10_1177_01423312221088087 crossref_primary_10_3390_math12223544 crossref_primary_10_1016_j_neucom_2022_06_038 crossref_primary_10_1109_TCSII_2022_3233794 crossref_primary_10_1016_j_jfranklin_2020_07_039 crossref_primary_10_1109_TCYB_2021_3125851 crossref_primary_10_1177_01423312241260916 crossref_primary_10_1016_j_amc_2024_128707 crossref_primary_10_1002_mma_9090 crossref_primary_10_1109_TSMC_2022_3221839 crossref_primary_10_1007_s11063_024_11482_7 crossref_primary_10_1109_TCSI_2024_3456555 crossref_primary_10_1093_imamci_dnaf010 crossref_primary_10_1109_TCYB_2020_3005964 crossref_primary_10_1007_s11063_021_10726_0 crossref_primary_10_1109_TFUZZ_2020_3046335 crossref_primary_10_1109_TFUZZ_2022_3169852 crossref_primary_10_1007_s12555_024_0397_z crossref_primary_10_1109_TCYB_2022_3207325 crossref_primary_10_1109_TNNLS_2024_3424519 crossref_primary_10_1109_JAS_2020_1003315 crossref_primary_10_3390_jmse11020385 crossref_primary_10_1002_rnc_7546 crossref_primary_10_1007_s11063_021_10624_5 crossref_primary_10_1016_j_neunet_2023_07_046 crossref_primary_10_1007_s12555_022_0682_7 crossref_primary_10_1109_TCYB_2022_3160014 crossref_primary_10_1109_TCYB_2021_3054626 crossref_primary_10_1016_j_neucom_2024_129173 crossref_primary_10_1109_TCSII_2024_3371180 crossref_primary_10_1016_j_ins_2023_02_072 crossref_primary_10_1080_00207179_2023_2201638 crossref_primary_10_1109_TAC_2024_3466871 crossref_primary_10_1002_rnc_5900 crossref_primary_10_1109_TCSII_2021_3120791 crossref_primary_10_1109_JAS_2022_105809 crossref_primary_10_1109_TCSII_2020_2999480 crossref_primary_10_1109_ACCESS_2023_3308692 crossref_primary_10_1109_TNNLS_2021_3125145 crossref_primary_10_1109_ACCESS_2020_2987960 crossref_primary_10_1109_JAS_2021_1004359 crossref_primary_10_1016_j_jfranklin_2022_05_020 crossref_primary_10_1002_rnc_6280 crossref_primary_10_1109_TVT_2024_3432392 crossref_primary_10_1016_j_neucom_2025_129643 crossref_primary_10_1007_s12555_021_1076_y crossref_primary_10_1007_s11063_020_10299_4 crossref_primary_10_1007_s11071_024_10116_w crossref_primary_10_1016_j_ins_2023_119397 crossref_primary_10_1109_JAS_2023_123405 crossref_primary_10_1016_j_chaos_2024_115649 crossref_primary_10_1016_j_isatra_2021_03_031 crossref_primary_10_1016_j_neucom_2022_07_052 crossref_primary_10_1109_JAS_2022_105413 |
| Cites_doi | 10.1016/j.automatica.2006.06.015 10.1109/TNNLS.2018.2817880 10.1109/TSMC.2018.2853809 10.1109/TAC.2017.2729502 10.1109/TNNLS.2018.2873676 10.1080/00207179.2018.1436193 10.1007/s11071-017-3945-8 10.1109/TCSI.2017.2777504 10.1109/TNNLS.2018.2878463 10.1002/rnc.4098 10.1109/TCYB.2015.2398892 10.1109/TAC.2018.2852605 10.1109/TAC.2011.2179869 10.1109/TAC.2014.2365073 10.1109/TAC.2017.2693824 10.1109/TCYB.2018.2794759 10.1016/j.automatica.2019.01.026 10.1109/TAC.2010.2041610 10.1049/iet-cta.2014.0219 10.1016/j.automatica.2015.02.001 10.1016/j.sysconle.2016.03.006 10.1109/TSMC.2016.2623634 10.1109/TSMC.2018.2876334 10.1016/j.jfranklin.2017.12.026 10.1016/j.automatica.2013.07.024 10.1109/TAC.2005.846556 10.1109/TAC.2011.2174666 10.1109/TCYB.2015.2496977 10.1109/TCYB.2015.2510746 10.1016/j.automatica.2015.01.021 10.1080/00207721.2018.1460411 10.1049/iet-cta.2014.1301 10.1016/j.automatica.2011.02.045 10.1080/00207721.2014.925608 10.1016/j.automatica.2009.07.012 10.1016/j.neucom.2017.05.007 10.1109/TCYB.2018.2857400 10.1109/TAC.2004.834113 10.1002/rnc.1814 10.1016/j.automatica.2015.02.033 10.1049/iet-cta.2017.0085 10.1016/j.ins.2015.12.031 10.1109/TNNLS.2017.2651402 10.1109/TAC.2014.2351431 10.1109/TCST.2017.2757448 10.1016/j.ins.2018.12.037 10.1109/TAC.2011.2146830 10.1109/TCYB.2017.2788874 10.1007/978-94-015-7793-9 10.1049/iet-cta.2014.0295 10.1109/TAC.2018.2857723 10.1016/j.automatica.2013.11.023 10.1109/TCSII.2015.2482158 10.1109/TNNLS.2018.2868986 10.1016/j.automatica.2017.09.017 10.1109/TNNLS.2016.2519894 10.1109/TIE.2017.2701775 10.1016/j.neunet.2015.11.002 10.1109/CDC.2009.5399776 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2019.2957069 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 5037 |
| ExternalDocumentID | 31905152 10_1109_TNNLS_2019_2957069 8950287 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61921004; 61603036; 61703037; U1713209; 61520106009 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-592738a44653762ea59c4409ca42a6411f6ab1a53c6b0d8b11e5b8ef30ca47013 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587699700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 11:57:45 EDT 2025 Mon Jun 30 04:42:17 EDT 2025 Thu Jan 02 23:00:43 EST 2025 Tue Nov 18 21:24:08 EST 2025 Sat Nov 29 01:40:05 EST 2025 Wed Aug 27 02:29:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-592738a44653762ea59c4409ca42a6411f6ab1a53c6b0d8b11e5b8ef30ca47013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2619-2843 0000-0001-9269-334X 0000-0002-5622-5183 |
| PMID | 31905152 |
| PQID | 2458750203 |
| PQPubID | 85436 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2334243270 proquest_journals_2458750203 crossref_primary_10_1109_TNNLS_2019_2957069 ieee_primary_8950287 pubmed_primary_31905152 crossref_citationtrail_10_1109_TNNLS_2019_2957069 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 filippov (ref59) 1988 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 cao (ref8) 2012; 57 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref16 doi: 10.1016/j.automatica.2006.06.015 – ident: ref5 doi: 10.1109/TNNLS.2018.2817880 – ident: ref39 doi: 10.1109/TSMC.2018.2853809 – ident: ref30 doi: 10.1109/TAC.2017.2729502 – ident: ref21 doi: 10.1109/TNNLS.2018.2873676 – ident: ref49 doi: 10.1080/00207179.2018.1436193 – ident: ref28 doi: 10.1007/s11071-017-3945-8 – ident: ref40 doi: 10.1109/TCSI.2017.2777504 – ident: ref12 doi: 10.1109/TNNLS.2018.2878463 – ident: ref54 doi: 10.1002/rnc.4098 – ident: ref37 doi: 10.1109/TCYB.2015.2398892 – ident: ref29 doi: 10.1109/TAC.2018.2852605 – ident: ref13 doi: 10.1109/TAC.2011.2179869 – ident: ref42 doi: 10.1109/TAC.2014.2365073 – ident: ref45 doi: 10.1109/TAC.2017.2693824 – ident: ref26 doi: 10.1109/TCYB.2018.2794759 – ident: ref53 doi: 10.1016/j.automatica.2019.01.026 – ident: ref17 doi: 10.1109/TAC.2010.2041610 – ident: ref36 doi: 10.1049/iet-cta.2014.0219 – ident: ref20 doi: 10.1016/j.automatica.2015.02.001 – ident: ref25 doi: 10.1016/j.sysconle.2016.03.006 – ident: ref22 doi: 10.1109/TSMC.2016.2623634 – ident: ref57 doi: 10.1109/TSMC.2018.2876334 – ident: ref52 doi: 10.1016/j.jfranklin.2017.12.026 – ident: ref14 doi: 10.1016/j.automatica.2013.07.024 – ident: ref2 doi: 10.1109/TAC.2005.846556 – ident: ref35 doi: 10.1109/TAC.2011.2174666 – ident: ref44 doi: 10.1109/TCYB.2015.2496977 – ident: ref43 doi: 10.1109/TCYB.2015.2510746 – ident: ref24 doi: 10.1016/j.automatica.2015.01.021 – ident: ref6 doi: 10.1080/00207721.2018.1460411 – ident: ref23 doi: 10.1049/iet-cta.2014.1301 – ident: ref18 doi: 10.1016/j.automatica.2011.02.045 – ident: ref58 doi: 10.1080/00207721.2014.925608 – ident: ref3 doi: 10.1016/j.automatica.2009.07.012 – ident: ref47 doi: 10.1016/j.neucom.2017.05.007 – ident: ref4 doi: 10.1109/TCYB.2018.2857400 – ident: ref1 doi: 10.1109/TAC.2004.834113 – ident: ref10 doi: 10.1002/rnc.1814 – ident: ref9 doi: 10.1016/j.automatica.2015.02.033 – ident: ref55 doi: 10.1049/iet-cta.2017.0085 – ident: ref50 doi: 10.1016/j.ins.2015.12.031 – ident: ref7 doi: 10.1109/TNNLS.2017.2651402 – ident: ref19 doi: 10.1109/TAC.2014.2351431 – ident: ref51 doi: 10.1109/TCST.2017.2757448 – ident: ref56 doi: 10.1016/j.ins.2018.12.037 – volume: 57 start-page: 33 year: 2012 ident: ref8 article-title: Distributed coordinated tracking with reduced interaction via a variable structure approach publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2146830 – ident: ref32 doi: 10.1109/TCYB.2017.2788874 – year: 1988 ident: ref59 publication-title: Differential Equations with Discontinuous Righthand Sides doi: 10.1007/978-94-015-7793-9 – ident: ref11 doi: 10.1049/iet-cta.2014.0295 – ident: ref48 doi: 10.1109/TAC.2018.2857723 – ident: ref41 doi: 10.1016/j.automatica.2013.11.023 – ident: ref38 doi: 10.1109/TCSII.2015.2482158 – ident: ref46 doi: 10.1109/TNNLS.2018.2868986 – ident: ref31 doi: 10.1016/j.automatica.2017.09.017 – ident: ref15 doi: 10.1109/TNNLS.2016.2519894 – ident: ref27 doi: 10.1109/TIE.2017.2701775 – ident: ref33 doi: 10.1016/j.neunet.2015.11.002 – ident: ref34 doi: 10.1109/CDC.2009.5399776 |
| SSID | ssj0000605649 |
| Score | 2.6840868 |
| Snippet | This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics.... This brief addresses the fixed-time event/self-triggered leader–follower consensus problems for networked multi-agent systems subject to nonlinear dynamics.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5029 |
| SubjectTerms | Algorithms Condition monitoring Consensus algorithm Dynamical systems Error analysis Fixed-time consensus tracking Heuristic algorithms Learning systems Measurement errors multi-agent system (MAS) Multiagent systems Nonlinear control Nonlinear dynamics Nonlinear systems self-triggered control Topology |
| Title | Fixed-Time Leader-Follower Consensus of Networked Nonlinear Systems via Event/Self-Triggered Control |
| URI | https://ieeexplore.ieee.org/document/8950287 https://www.ncbi.nlm.nih.gov/pubmed/31905152 https://www.proquest.com/docview/2458750203 https://www.proquest.com/docview/2334243270 |
| Volume | 31 |
| WOSCitedRecordID | wos000587699700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oMvVq0faWtZwTfdXnY3yWYfRXr4IEHoCfcW9ityUO6kd1f8853ZzQUfVPAtkMkmZGZ2ZnY-fgDvBonaHCwqkg-So4QEbts2cnRdRUCLOASTwSZ017XLpfl6BB-mXpgYYyo-i9d0mXL5YeP3dFQ2a02N5lAfw7HWOvdqTecpJfrlTfJ2pWgkl0ovDz0ypZktuu7LLRVymWtpal1SffNvdigBq_zdx0y2Zn76f1_5FJ6MPiX7mIXgGRzF9XM4PeA1sFF9zyDMVz9j4NT1wTK0Jp-jGBBOGiPgTkK92LLNwLpcGx4D6_IkDYur5NHm7GFl2Q0VSc5u493AFxjdfye8T1qBit5fwLf5zeLTZz6iLHCvarHjtaHuHJsGreHOGG1tfIVRn7eVtE0lxNBYJ2ytfOPK0DohYu3aOKgSKTR6kC_hZL1Zx9fA5NA65V3pyDGJjTWtQkloqui8st7FAsThn_d-HEFOSBh3fQpFStMnPvXEp37kUwHvp2d-5AEc_6Q-I4ZMlCMvCrg8sLYfdXTby6rGYI0ysQW8nW6jdlHKxK7jZo80SlWyUlKXBbzKIjGtjZsXAeTI8z-_8wIeS4rNU9_iJZzs7vfxDTzyD7vV9v4KRXjZXiUR_gVhBuz2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU_BePPXUq54awTfNbZM0bfMocsuJaxFuhX0raZLKwrErt7uHf74zSbf4oIJvhU7T0pnJzGQ-fgBve4na7C0qkvOSo4R4bus6cHRdhUeL2HuTwCaqpqkXC_P1AN6PvTAhhFh8Fs7pMuby_drt6KhsUhuN5rC6A3d1UUiRurXGE5UcPfMy-rtSlJJLVS32XTK5mcybZnZFpVzmXBpd5VTh_JslitAqf_cyo7WZHv_fdz6EB4NXyT4kMXgEB2H1GI73iA1sUOAT8NPlz-A59X2wBK7JpygIhJTGCLqTcC82bN2zJlWHB8-aNEvD4ippuDm7XVp2QWWSk6tw3fM5xvffCfGTVqCy9yfwbXox_3jJB5wF7pQWW64N9efYOGoN98ZgtXEFxn3OFtKWhRB9aTthtXJll_u6EyLorg69ypGiQh_yKRyu1qtwCkz2dadcl3fkmoTSmlqhLJRF6JyyrgsZiP0_b90whJywMK7bGIzkpo18aolP7cCnDN6Nz_xIIzj-SX1CDBkpB15kcLZnbTto6aaVhcZwjXKxGbwZb6N-UdLErsJ6hzRKFbJQssozeJZEYlwbty-CyJHP__zO13D_cv5l1s4-NZ9fwJGkSD12MZ7B4fZmF17CPXe7XW5uXkVB_gVCQ-9V |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-Time+Leader-Follower+Consensus+of+Networked+Nonlinear+Systems+via+Event%2FSelf-Triggered+Control&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Jian&rft.au=Zhang%2C+Yanling&rft.au=Yu%2C+Yao&rft.au=Sun%2C+Changyin&rft.date=2020-11-01&rft.eissn=2162-2388&rft_id=info:doi/10.1109%2FTNNLS.2019.2957069&rft_id=info%3Apmid%2F31905152&rft.externalDocID=31905152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |