Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differ...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 3; s. 1 - 15 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!