Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differ...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 35; H. 3; S. 1 - 15 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an <inline-formula> <tex-math notation="LaTeX">\mathcal{O}(({1}/{T})+({1}/{\sqrt{T}}))</tex-math> </inline-formula> convergence rate, where <inline-formula> <tex-math notation="LaTeX">T</tex-math> </inline-formula> is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. |
|---|---|
| AbstractList | The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an [Formula Omitted] convergence rate, where [Formula Omitted] is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an <inline-formula> <tex-math notation="LaTeX">\mathcal{O}(({1}/{T})+({1}/{\sqrt{T}}))</tex-math> </inline-formula> convergence rate, where <inline-formula> <tex-math notation="LaTeX">T</tex-math> </inline-formula> is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. |
| Author | Jiang, Xia Xie, Lihua Chen, Jie Sun, Jian Zeng, Xianlin |
| Author_xml | – sequence: 1 givenname: Xia orcidid: 0000-0002-1967-2136 surname: Jiang fullname: Jiang, Xia organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Xianlin orcidid: 0000-0002-6224-9974 surname: Zeng fullname: Zeng, Xianlin organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Jian orcidid: 0000-0001-9898-3129 surname: Sun fullname: Sun, Jian organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Jie orcidid: 0000-0003-2449-9793 surname: Chen fullname: Chen, Jie organization: School of Electronic and Information Engineering, Tongji University, Shanghai, China – sequence: 5 givenname: Lihua orcidid: 0000-0002-7137-4136 surname: Xie fullname: Xie, Lihua organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36070265$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFPHCEYhkljU636B2piSHrpZbYfMMMwR2OrNtmsxrVpb4RhmF3MDGyBSVp_veiuHjyUA3B4ni_wvh_RnvPOIPSJwIwQaL7eLRbz5YwCpTNGgdSEvEMHlHBaUCbE3uu9_r2PjmO8h7w4VLxsPqB9xqEGyqsDtPpmYwq2nZLp8DJ5vVYxWY1vgv9rRzXgs2Hlg03rEf_KO75VrvMjvjVxPfX9YN0K9z7ghXdx9D4DF9bZZIrlNOLrTbKjfVDJeneE3vdqiOZ4dx6inxff786vivn15Y_zs3mhWUVSUdVcaaEEIS03SgPXbW-gpaYUvBSsrzqmasW1qIjmFKAtm64zJSgu6qbtgB2iL9u5m-D_TCYmOdqozTAoZ_wUJc1BMag5LzP6-Q1676fg8uskbRjjBEhTZep0R03taDq5CTmW8E--RJgBsQV08DEG00tt0_OfU1B2kATkU2HyuTD5VJjcFZZV-kZ9mf5f6WQrWWPMq9AIQSg07BGs3aFj |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111954 crossref_primary_10_1109_TSP_2023_3262181 crossref_primary_10_1109_TNNLS_2024_3402108 crossref_primary_10_1109_TNNLS_2024_3492144 crossref_primary_10_1109_TAC_2025_3552743 crossref_primary_10_1109_TSP_2025_3531356 |
| Cites_doi | 10.1007/s11432-020-3163-0 10.1016/j.neucom.2019.01.037 10.1109/CDC.2016.7798265 10.1109/TAC.2010.2041686 10.1109/TAC.2020.2989282 10.1007/s11768-015-5100-8 10.1109/TAC.2008.2009515 10.1002/9781119149682.ch3 10.1137/S1052623499362111 10.1109/TNNLS.2019.2933452 10.1007/s11432-019-2638-2 10.1109/TIT.2013.2275131 10.1109/TPAMI.2007.1102 10.1137/16m1086133 10.7551/mitpress/8996.001.0001 10.1109/TSP.2021.3092347 10.1109/tsp.2020.3031071 10.1007/s10107-019-01440-w 10.1109/TAC.2020.3009363 10.1109/LCSYS.2021.3090652 10.1137/080716542 10.1109/TSIPN.2016.2524588 10.1109/TNNLS.2020.3015958 10.1109/Allerton.2012.6483273 10.1137/140961791 10.1002/rnc.5199 10.1016/j.automatica.2019.108607 10.1142/S2301385020500016 10.1007/s11228-020-00561-1 10.1109/tnnls.2021.3083655 10.1109/tnnls.2021.3071058 10.1007/s12532-013-0053-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3201711 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 15 |
| ExternalDocumentID | 36070265 10_1109_TNNLS_2022_3201711 9881209 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: China Scholarship Council grantid: 202006030072 funderid: 10.13039/501100004543 – fundername: National Key Research and Development Program of China grantid: 2021YFB1714800 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of Chongqing grantid: 2021ZX4100027 funderid: 10.13039/501100005230 – fundername: National Natural Science Foundation of China grantid: 61925303; 62088101; 62073035; 62173034 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-576ac8a811b6eac06cbfe0b2e486483f5d3a7a6c851c6200b49dde40a6879bd03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852229000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 08:13:31 EDT 2025 Sun Nov 30 05:09:21 EST 2025 Thu Jul 24 03:24:49 EDT 2025 Tue Nov 18 22:17:20 EST 2025 Sat Nov 29 01:40:22 EST 2025 Wed Aug 27 02:17:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-576ac8a811b6eac06cbfe0b2e486483f5d3a7a6c851c6200b49dde40a6879bd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9898-3129 0000-0002-7137-4136 0000-0002-6224-9974 0000-0003-2449-9793 0000-0002-1967-2136 |
| PMID | 36070265 |
| PQID | 2933610195 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9881209 crossref_primary_10_1109_TNNLS_2022_3201711 proquest_miscellaneous_2711307664 crossref_citationtrail_10_1109_TNNLS_2022_3201711 pubmed_primary_36070265 proquest_journals_2933610195 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 Mishchenko (ref36); 33 ref14 ref31 ref30 ref11 ref2 ref1 ref17 Rakhlin (ref32) ref39 ref16 ref18 Drori (ref33); 119 ref24 Wang (ref26) 2020; 111 ref23 ref45 Zhong (ref8); 33 Lian (ref22) ref25 ref20 ref42 Mishchenko (ref38); 162 ref41 ref44 ref21 Vandenberghe (ref15) 2012 Ahn (ref29) ref28 Bertsekas (ref10) 2015 ref27 ref7 Qi (ref37) 2019; 337 Schmidt (ref9); 24 ref4 Shamir (ref19); 28 ref3 ref6 ref5 Li (ref43) Li (ref40); 31 |
| References_xml | – ident: ref17 doi: 10.1007/s11432-020-3163-0 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst ident: ref29 article-title: SGD with shuffling: Optimal rates without component convexity and large epoch requirements – volume: 337 start-page: 46 year: 2019 ident: ref37 article-title: Convergence analysis of distributed stochastic gradient descent with shuffling publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.037 – start-page: 1571 volume-title: Proc. 29th Int. Conf. Int. Conf. Mach. Learn ident: ref32 article-title: Making gradient descent optimal for strongly convex stochastic optimization – volume: 33 start-page: 1086 volume-title: Proc. 17th Int. Conf. Artif. Intell. Statist. ident: ref8 article-title: Accelerated stochastic gradient method for composite regularization – start-page: 5336 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst ident: ref22 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent – ident: ref41 doi: 10.1109/CDC.2016.7798265 – ident: ref27 doi: 10.1109/TAC.2010.2041686 – ident: ref12 doi: 10.1109/TAC.2020.2989282 – ident: ref6 doi: 10.1007/s11768-015-5100-8 – ident: ref7 doi: 10.1109/TAC.2008.2009515 – volume: 24 start-page: 1458 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Convergence rates of inexact proximal-gradient methods for convex optimization – ident: ref44 doi: 10.1002/9781119149682.ch3 – ident: ref34 doi: 10.1137/S1052623499362111 – ident: ref2 doi: 10.1109/TNNLS.2019.2933452 – ident: ref5 doi: 10.1007/s11432-019-2638-2 – volume: 162 start-page: 15718 volume-title: Proc. 39th Int. Conf. Mach. Learn. ident: ref38 article-title: Proximal and federated random reshuffling – volume: 28 start-page: I-71 volume-title: Proc. 30th Int. Conf. Mach. Learn. ident: ref19 article-title: Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes – ident: ref20 doi: 10.1109/TIT.2013.2275131 – ident: ref3 doi: 10.1109/TPAMI.2007.1102 – ident: ref21 doi: 10.1137/16m1086133 – ident: ref35 doi: 10.7551/mitpress/8996.001.0001 – ident: ref14 doi: 10.1109/TSP.2021.3092347 – ident: ref24 doi: 10.1109/tsp.2020.3031071 – ident: ref30 doi: 10.1007/s10107-019-01440-w – ident: ref13 doi: 10.1109/TAC.2020.3009363 – ident: ref25 doi: 10.1109/LCSYS.2021.3090652 – year: 2015 ident: ref10 article-title: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey publication-title: arXiv:1507.01030 – volume-title: Lecture Notes for EE 236C, UCLA year: 2012 ident: ref15 – ident: ref42 doi: 10.1137/080716542 – ident: ref45 doi: 10.1109/TSIPN.2016.2524588 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref40 article-title: A simple proximal stochastic gradient method for nonsmooth nonconvex optimization – volume: 119 start-page: 2658 volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref33 article-title: The complexity of finding stationary points with stochastic gradient descent – ident: ref16 doi: 10.1109/TNNLS.2020.3015958 – ident: ref28 doi: 10.1109/Allerton.2012.6483273 – ident: ref39 doi: 10.1137/140961791 – ident: ref11 doi: 10.1002/rnc.5199 – volume: 111 year: 2020 ident: ref26 article-title: Stability analysis of distributed convex optimization under persistent attacks: A hybrid systems approach publication-title: Automatica doi: 10.1016/j.automatica.2019.108607 – ident: ref4 doi: 10.1142/S2301385020500016 – ident: ref1 doi: 10.1007/s11228-020-00561-1 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref43 article-title: On the convergence of FedAvg on Non-IID data – ident: ref18 doi: 10.1109/tnnls.2021.3083655 – volume: 33 start-page: 17309 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref36 article-title: Random reshuffling: Simple analysis with vast improvements – ident: ref23 doi: 10.1109/tnnls.2021.3071058 – ident: ref31 doi: 10.1007/s12532-013-0053-8 |
| SSID | ssj0000605649 |
| Score | 2.4740884 |
| Snippet | The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Convergence Convex functions Costs Distributed optimization Machine learning Machine learning algorithms Minimization Multiagent systems Objective function Optimization proximal operator random reshuffling (RR) Regularization stochastic algorithm Stochasticity Sums time-varying graphs |
| Title | Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization |
| URI | https://ieeexplore.ieee.org/document/9881209 https://www.ncbi.nlm.nih.gov/pubmed/36070265 https://www.proquest.com/docview/2933610195 https://www.proquest.com/docview/2711307664 |
| Volume | 35 |
| WOSCitedRecordID | wos000852229000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuFCjQQKmMxA3SJrHXsY8IWHFAoeoWsbfIcZzuSk2CdhPEz2fGeYgDIHGJIsVxrMzrm7FnBuC1QW9NU1xDKOdCtNc81CKqQqqttHA2RRtR-mYTaZap9VpfHcDbORfGOecPn7kLuvV7-WVrewqVXWqlKNXzEA7TVA65WnM8JUJcLj3aTWKZhAlP11OOTKQvb7Ls8wq9wSS54AmViKEOMVwivydkVn4zSb7Hyt_hpjc7y-P_W_BDeDDCS_Zu4IdHcOCax3A8tW5goySfwO0HKphLva5cyVZdazeGCjazq137c1vTDHe37W7bbWr2Da_s2jRlW7Nrt9_0VUUp7AzRLsuQZ-sWic2WWwKv4aqv2RfUQvWY3vkEvi4_3rz_FI49F0LLF3EXovthrDIqjguJOjmStqhcVCROKCkUrxYlN6mRFoGalShhhdCoIEVkpEp1UUb8KRw1beNOgWmnU1dWkkJLokBOkVUVFxzftQWCsjiAePrtuR0LklNfjLvcOyaRzj3VcqJaPlItgDfzO9-Hchz_HH1CNJlHjuQI4Gyibj5K7D5H2MMRSsZ6EcCr-THKGm2gmMa1PY7BOVEnSikCeDZwxTz3xEzP__zNF3AfVyaG02tncNTtevcS7tkf3Xa_O0eGXqtzz9C_AJMj7-U |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEJ_UaqIvrVqraNU18U1pgV0W9tGolxpPbHpnvDeyLEvvkgLmDkz_fGf4ig9q4gshYVk2zNdvZndmAF5r9NYUxTVEbK2L9pq7SniFS7WVQmsitBF512wiSpJ4tVIXe_B2yoWx1naHz-wp3XZ7-XltWgqVnak4plTPW3A7FCLw-mytKaLiITKXHd4NfBm4AY9WY5aMp86WSTJfoD8YBKc8oCIx1COGS-T4gAzLb0ap67Lyd8DZGZ7Z4f8t-T4cDACTves54gHs2eohHI7NG9ggy0dw9YFK5lK3K5uzRVObtaaSzexiW99sSprh-qrebpp1yb7jlV3qKq9Ldml367YoKImdId5lCXJtWSO52WxD8NVdtCX7inqoHBI8H8G32cfl-3N36LrgGh76jYsOiDaxjn0_k6iVPWmywnpZYEUsRcyLMOc60tIgVDMSZSwTClWk8LSMI5XlHj-G_aqu7BNgyqrI5oWk4JLIkFdkUfgZx3dNhrDMd8Aff3tqhpLk1BnjOu1cE0-lHdVSolo6UM2BN9M7P_qCHP8cfUQ0mUYO5HDgZKRuOsjsLkXgwxFM-ip04NX0GKWNtlB0ZesWx-CcqBWlFA487rlimntkpqd__uZLuHu-_DJP55-Sz8_gHq5S9GfZTmC_2bb2OdwxP5vNbvuiY-tfiMbyRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Stochastic+Proximal+Algorithm+With+Random+Reshuffling+for+Nonsmooth+Finite-Sum+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jiang%2C+Xia&rft.au=Zeng%2C+Xianlin&rft.au=Sun%2C+Jian&rft.au=Chen%2C+Jie&rft.date=2024-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=4082&rft.epage=4096&rft_id=info:doi/10.1109%2FTNNLS.2022.3201711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2022_3201711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |