Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization

The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 3; S. 1 - 15
Hauptverfasser: Jiang, Xia, Zeng, Xianlin, Sun, Jian, Chen, Jie, Xie, Lihua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an <inline-formula> <tex-math notation="LaTeX">\mathcal{O}(({1}/{T})+({1}/{\sqrt{T}}))</tex-math> </inline-formula> convergence rate, where <inline-formula> <tex-math notation="LaTeX">T</tex-math> </inline-formula> is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
AbstractList The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an [Formula Omitted] convergence rate, where [Formula Omitted] is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/√T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an <inline-formula> <tex-math notation="LaTeX">\mathcal{O}(({1}/{T})+({1}/{\sqrt{T}}))</tex-math> </inline-formula> convergence rate, where <inline-formula> <tex-math notation="LaTeX">T</tex-math> </inline-formula> is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
Author Jiang, Xia
Xie, Lihua
Chen, Jie
Sun, Jian
Zeng, Xianlin
Author_xml – sequence: 1
  givenname: Xia
  orcidid: 0000-0002-1967-2136
  surname: Jiang
  fullname: Jiang, Xia
  organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Xianlin
  orcidid: 0000-0002-6224-9974
  surname: Zeng
  fullname: Zeng, Xianlin
  organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Jian
  orcidid: 0000-0001-9898-3129
  surname: Sun
  fullname: Sun, Jian
  organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-2449-9793
  surname: Chen
  fullname: Chen, Jie
  organization: School of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 5
  givenname: Lihua
  orcidid: 0000-0002-7137-4136
  surname: Xie
  fullname: Xie, Lihua
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36070265$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPHCEYhkljU636B2piSHrpZbYfMMMwR2OrNtmsxrVpb4RhmF3MDGyBSVp_veiuHjyUA3B4ni_wvh_RnvPOIPSJwIwQaL7eLRbz5YwCpTNGgdSEvEMHlHBaUCbE3uu9_r2PjmO8h7w4VLxsPqB9xqEGyqsDtPpmYwq2nZLp8DJ5vVYxWY1vgv9rRzXgs2Hlg03rEf_KO75VrvMjvjVxPfX9YN0K9z7ghXdx9D4DF9bZZIrlNOLrTbKjfVDJeneE3vdqiOZ4dx6inxff786vivn15Y_zs3mhWUVSUdVcaaEEIS03SgPXbW-gpaYUvBSsrzqmasW1qIjmFKAtm64zJSgu6qbtgB2iL9u5m-D_TCYmOdqozTAoZ_wUJc1BMag5LzP6-Q1676fg8uskbRjjBEhTZep0R03taDq5CTmW8E--RJgBsQV08DEG00tt0_OfU1B2kATkU2HyuTD5VJjcFZZV-kZ9mf5f6WQrWWPMq9AIQSg07BGs3aFj
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111954
crossref_primary_10_1109_TSP_2023_3262181
crossref_primary_10_1109_TNNLS_2024_3402108
crossref_primary_10_1109_TNNLS_2024_3492144
crossref_primary_10_1109_TAC_2025_3552743
crossref_primary_10_1109_TSP_2025_3531356
Cites_doi 10.1007/s11432-020-3163-0
10.1016/j.neucom.2019.01.037
10.1109/CDC.2016.7798265
10.1109/TAC.2010.2041686
10.1109/TAC.2020.2989282
10.1007/s11768-015-5100-8
10.1109/TAC.2008.2009515
10.1002/9781119149682.ch3
10.1137/S1052623499362111
10.1109/TNNLS.2019.2933452
10.1007/s11432-019-2638-2
10.1109/TIT.2013.2275131
10.1109/TPAMI.2007.1102
10.1137/16m1086133
10.7551/mitpress/8996.001.0001
10.1109/TSP.2021.3092347
10.1109/tsp.2020.3031071
10.1007/s10107-019-01440-w
10.1109/TAC.2020.3009363
10.1109/LCSYS.2021.3090652
10.1137/080716542
10.1109/TSIPN.2016.2524588
10.1109/TNNLS.2020.3015958
10.1109/Allerton.2012.6483273
10.1137/140961791
10.1002/rnc.5199
10.1016/j.automatica.2019.108607
10.1142/S2301385020500016
10.1007/s11228-020-00561-1
10.1109/tnnls.2021.3083655
10.1109/tnnls.2021.3071058
10.1007/s12532-013-0053-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3201711
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15
ExternalDocumentID 36070265
10_1109_TNNLS_2022_3201711
9881209
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202006030072
  funderid: 10.13039/501100004543
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB1714800
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Chongqing
  grantid: 2021ZX4100027
  funderid: 10.13039/501100005230
– fundername: National Natural Science Foundation of China
  grantid: 61925303; 62088101; 62073035; 62173034
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-576ac8a811b6eac06cbfe0b2e486483f5d3a7a6c851c6200b49dde40a6879bd03
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852229000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 08:13:31 EDT 2025
Sun Nov 30 05:09:21 EST 2025
Thu Jul 24 03:24:49 EDT 2025
Tue Nov 18 22:17:20 EST 2025
Sat Nov 29 01:40:22 EST 2025
Wed Aug 27 02:17:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-576ac8a811b6eac06cbfe0b2e486483f5d3a7a6c851c6200b49dde40a6879bd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9898-3129
0000-0002-7137-4136
0000-0002-6224-9974
0000-0003-2449-9793
0000-0002-1967-2136
PMID 36070265
PQID 2933610195
PQPubID 85436
PageCount 15
ParticipantIDs ieee_primary_9881209
crossref_primary_10_1109_TNNLS_2022_3201711
proquest_miscellaneous_2711307664
crossref_citationtrail_10_1109_TNNLS_2022_3201711
pubmed_primary_36070265
proquest_journals_2933610195
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Mishchenko (ref36); 33
ref14
ref31
ref30
ref11
ref2
ref1
ref17
Rakhlin (ref32)
ref39
ref16
ref18
Drori (ref33); 119
ref24
Wang (ref26) 2020; 111
ref23
ref45
Zhong (ref8); 33
Lian (ref22)
ref25
ref20
ref42
Mishchenko (ref38); 162
ref41
ref44
ref21
Vandenberghe (ref15) 2012
Ahn (ref29)
ref28
Bertsekas (ref10) 2015
ref27
ref7
Qi (ref37) 2019; 337
Schmidt (ref9); 24
ref4
Shamir (ref19); 28
ref3
ref6
ref5
Li (ref43)
Li (ref40); 31
References_xml – ident: ref17
  doi: 10.1007/s11432-020-3163-0
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst
  ident: ref29
  article-title: SGD with shuffling: Optimal rates without component convexity and large epoch requirements
– volume: 337
  start-page: 46
  year: 2019
  ident: ref37
  article-title: Convergence analysis of distributed stochastic gradient descent with shuffling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.037
– start-page: 1571
  volume-title: Proc. 29th Int. Conf. Int. Conf. Mach. Learn
  ident: ref32
  article-title: Making gradient descent optimal for strongly convex stochastic optimization
– volume: 33
  start-page: 1086
  volume-title: Proc. 17th Int. Conf. Artif. Intell. Statist.
  ident: ref8
  article-title: Accelerated stochastic gradient method for composite regularization
– start-page: 5336
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst
  ident: ref22
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
– ident: ref41
  doi: 10.1109/CDC.2016.7798265
– ident: ref27
  doi: 10.1109/TAC.2010.2041686
– ident: ref12
  doi: 10.1109/TAC.2020.2989282
– ident: ref6
  doi: 10.1007/s11768-015-5100-8
– ident: ref7
  doi: 10.1109/TAC.2008.2009515
– volume: 24
  start-page: 1458
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Convergence rates of inexact proximal-gradient methods for convex optimization
– ident: ref44
  doi: 10.1002/9781119149682.ch3
– ident: ref34
  doi: 10.1137/S1052623499362111
– ident: ref2
  doi: 10.1109/TNNLS.2019.2933452
– ident: ref5
  doi: 10.1007/s11432-019-2638-2
– volume: 162
  start-page: 15718
  volume-title: Proc. 39th Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Proximal and federated random reshuffling
– volume: 28
  start-page: I-71
  volume-title: Proc. 30th Int. Conf. Mach. Learn.
  ident: ref19
  article-title: Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
– ident: ref20
  doi: 10.1109/TIT.2013.2275131
– ident: ref3
  doi: 10.1109/TPAMI.2007.1102
– ident: ref21
  doi: 10.1137/16m1086133
– ident: ref35
  doi: 10.7551/mitpress/8996.001.0001
– ident: ref14
  doi: 10.1109/TSP.2021.3092347
– ident: ref24
  doi: 10.1109/tsp.2020.3031071
– ident: ref30
  doi: 10.1007/s10107-019-01440-w
– ident: ref13
  doi: 10.1109/TAC.2020.3009363
– ident: ref25
  doi: 10.1109/LCSYS.2021.3090652
– year: 2015
  ident: ref10
  article-title: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
  publication-title: arXiv:1507.01030
– volume-title: Lecture Notes for EE 236C, UCLA
  year: 2012
  ident: ref15
– ident: ref42
  doi: 10.1137/080716542
– ident: ref45
  doi: 10.1109/TSIPN.2016.2524588
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: A simple proximal stochastic gradient method for nonsmooth nonconvex optimization
– volume: 119
  start-page: 2658
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  ident: ref33
  article-title: The complexity of finding stationary points with stochastic gradient descent
– ident: ref16
  doi: 10.1109/TNNLS.2020.3015958
– ident: ref28
  doi: 10.1109/Allerton.2012.6483273
– ident: ref39
  doi: 10.1137/140961791
– ident: ref11
  doi: 10.1002/rnc.5199
– volume: 111
  year: 2020
  ident: ref26
  article-title: Stability analysis of distributed convex optimization under persistent attacks: A hybrid systems approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108607
– ident: ref4
  doi: 10.1142/S2301385020500016
– ident: ref1
  doi: 10.1007/s11228-020-00561-1
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref43
  article-title: On the convergence of FedAvg on Non-IID data
– ident: ref18
  doi: 10.1109/tnnls.2021.3083655
– volume: 33
  start-page: 17309
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Random reshuffling: Simple analysis with vast improvements
– ident: ref23
  doi: 10.1109/tnnls.2021.3071058
– ident: ref31
  doi: 10.1007/s12532-013-0053-8
SSID ssj0000605649
Score 2.4740884
Snippet The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Convergence
Convex functions
Costs
Distributed optimization
Machine learning
Machine learning algorithms
Minimization
Multiagent systems
Objective function
Optimization
proximal operator
random reshuffling (RR)
Regularization
stochastic algorithm
Stochasticity
Sums
time-varying graphs
Title Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization
URI https://ieeexplore.ieee.org/document/9881209
https://www.ncbi.nlm.nih.gov/pubmed/36070265
https://www.proquest.com/docview/2933610195
https://www.proquest.com/docview/2711307664
Volume 35
WOSCitedRecordID wos000852229000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuFCjQQKmMxA3SJrHXsY8IWHFAoeoWsbfIcZzuSk2CdhPEz2fGeYgDIHGJIsVxrMzrm7FnBuC1QW9NU1xDKOdCtNc81CKqQqqttHA2RRtR-mYTaZap9VpfHcDbORfGOecPn7kLuvV7-WVrewqVXWqlKNXzEA7TVA65WnM8JUJcLj3aTWKZhAlP11OOTKQvb7Ls8wq9wSS54AmViKEOMVwivydkVn4zSb7Hyt_hpjc7y-P_W_BDeDDCS_Zu4IdHcOCax3A8tW5goySfwO0HKphLva5cyVZdazeGCjazq137c1vTDHe37W7bbWr2Da_s2jRlW7Nrt9_0VUUp7AzRLsuQZ-sWic2WWwKv4aqv2RfUQvWY3vkEvi4_3rz_FI49F0LLF3EXovthrDIqjguJOjmStqhcVCROKCkUrxYlN6mRFoGalShhhdCoIEVkpEp1UUb8KRw1beNOgWmnU1dWkkJLokBOkVUVFxzftQWCsjiAePrtuR0LklNfjLvcOyaRzj3VcqJaPlItgDfzO9-Hchz_HH1CNJlHjuQI4Gyibj5K7D5H2MMRSsZ6EcCr-THKGm2gmMa1PY7BOVEnSikCeDZwxTz3xEzP__zNF3AfVyaG02tncNTtevcS7tkf3Xa_O0eGXqtzz9C_AJMj7-U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEJ_UaqIvrVqraNU18U1pgV0W9tGolxpPbHpnvDeyLEvvkgLmDkz_fGf4ig9q4gshYVk2zNdvZndmAF5r9NYUxTVEbK2L9pq7SniFS7WVQmsitBF512wiSpJ4tVIXe_B2yoWx1naHz-wp3XZ7-XltWgqVnak4plTPW3A7FCLw-mytKaLiITKXHd4NfBm4AY9WY5aMp86WSTJfoD8YBKc8oCIx1COGS-T4gAzLb0ap67Lyd8DZGZ7Z4f8t-T4cDACTves54gHs2eohHI7NG9ggy0dw9YFK5lK3K5uzRVObtaaSzexiW99sSprh-qrebpp1yb7jlV3qKq9Ldml367YoKImdId5lCXJtWSO52WxD8NVdtCX7inqoHBI8H8G32cfl-3N36LrgGh76jYsOiDaxjn0_k6iVPWmywnpZYEUsRcyLMOc60tIgVDMSZSwTClWk8LSMI5XlHj-G_aqu7BNgyqrI5oWk4JLIkFdkUfgZx3dNhrDMd8Aff3tqhpLk1BnjOu1cE0-lHdVSolo6UM2BN9M7P_qCHP8cfUQ0mUYO5HDgZKRuOsjsLkXgwxFM-ip04NX0GKWNtlB0ZesWx-CcqBWlFA487rlimntkpqd__uZLuHu-_DJP55-Sz8_gHq5S9GfZTmC_2bb2OdwxP5vNbvuiY-tfiMbyRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Stochastic+Proximal+Algorithm+With+Random+Reshuffling+for+Nonsmooth+Finite-Sum+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jiang%2C+Xia&rft.au=Zeng%2C+Xianlin&rft.au=Sun%2C+Jian&rft.au=Chen%2C+Jie&rft.date=2024-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=4082&rft.epage=4096&rft_id=info:doi/10.1109%2FTNNLS.2022.3201711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2022_3201711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon