Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network

When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 22; H. 3-4; S. 783 - 791
1. Verfasser: Lin, Su-Mei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer-Verlag 01.03.2013
Springer
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellers’ logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4–6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity.
AbstractList When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellers’ logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4–6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity.
When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellersa logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4a6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity.
Author Lin, Su-Mei
Author_xml – sequence: 1
  givenname: Su-Mei
  surname: Lin
  fullname: Lin, Su-Mei
  email: sally6212002@gmail.com, PI047@mail.oit.edu.tw
  organization: Department of Marketing and Logistics, China University of Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27659255$$DView record in Pascal Francis
BookMark eNp9kc1u1TAQhS1UJG4LD8DOGyQ2Af_ETrKsKgpIldjA2pr4OsHF1754HKrbl-FVcZrCgkUXo9HMfOcs5pyTs5iiI-Q1Z-84Y917ZEwJ3jBeq9NDw5-RHW-lbCRT_RnZsaGtF93KF-Qc8ZYx1upe7cjvywjhhB5pmii6_MtbRxGKxwls8SlSH-mdGyks2xjS7LF4i__oBX2cKVCbDqOP8EBVs-u8-EKncKLpWPzB328XCHPKvnw_UIh7OrvoMgSa3Zwd4gpEt6yb6Mpdyj9ekucTBHSvHvsF-Xb94evVp-bmy8fPV5c3jZWKl0ZJIVm3t72STgxDPzKmRz3tJQDYSbuhn2RtrOW21dBL4eyo1q3QrBNCygvydvM95vRzcVjMwaN1IUB0aUFTf8l6zVWrKvrmEQW0EKYM0Xo0x-wPkE9GdFoNQq1ct3E2J8TsJmN9eXhCyeCD4cys0ZktOlOjM2t0hlcl_0_51_wpjdg0WNk4u2xu05JruPiE6A-p1LEZ
CitedBy_id crossref_primary_10_3390_rs13132541
crossref_primary_10_1007_s13042_017_0669_5
crossref_primary_10_1016_j_asoc_2015_01_022
crossref_primary_10_1016_j_energy_2016_09_065
crossref_primary_10_1016_j_knosys_2017_09_038
crossref_primary_10_1016_j_imu_2017_02_005
crossref_primary_10_1155_2020_6352539
crossref_primary_10_1016_j_amc_2014_02_005
crossref_primary_10_1016_j_knosys_2013_12_011
crossref_primary_10_1016_j_knosys_2016_05_019
crossref_primary_10_1016_j_eswa_2020_113486
crossref_primary_10_1016_j_knosys_2020_106437
crossref_primary_10_1016_j_knosys_2016_01_006
crossref_primary_10_1515_sspjce_2015_0005
crossref_primary_10_1155_2014_314797
crossref_primary_10_1155_2017_3423562
crossref_primary_10_1016_j_eswa_2016_08_039
crossref_primary_10_1016_j_knosys_2017_11_001
crossref_primary_10_1016_j_knosys_2020_106704
crossref_primary_10_1007_s10462_023_10451_1
crossref_primary_10_1007_s11227_016_1806_8
crossref_primary_10_1177_0958305X221120256
crossref_primary_10_3389_fmars_2022_985048
crossref_primary_10_1049_rpg2_12055
crossref_primary_10_3390_app10082822
crossref_primary_10_3390_sym9070109
crossref_primary_10_1007_s11047_016_9601_2
crossref_primary_10_1007_s00500_017_2733_1
crossref_primary_10_1016_j_neucom_2016_02_074
crossref_primary_10_1371_journal_pone_0165804
crossref_primary_10_1016_j_ins_2016_07_030
crossref_primary_10_1080_00207543_2016_1170226
crossref_primary_10_1016_j_autcon_2022_104189
crossref_primary_10_1109_ACCESS_2020_3020895
crossref_primary_10_1155_2015_124675
crossref_primary_10_3390_app6070199
crossref_primary_10_1016_j_amc_2015_07_030
crossref_primary_10_1002_cem_2729
crossref_primary_10_1371_journal_pone_0120976
crossref_primary_10_1080_09540091_2013_854735
crossref_primary_10_1016_j_aei_2020_101154
crossref_primary_10_1016_j_energy_2021_120153
crossref_primary_10_1016_j_ijhydene_2016_01_112
crossref_primary_10_1515_jag_2019_0025
crossref_primary_10_1016_j_eswa_2015_01_048
crossref_primary_10_1007_s42452_021_04579_4
crossref_primary_10_1016_j_cie_2014_11_005
crossref_primary_10_1155_2015_492195
crossref_primary_10_3390_en12173260
crossref_primary_10_1177_1687814019850720
crossref_primary_10_1016_j_knosys_2017_12_031
crossref_primary_10_1007_s11676_019_00980_3
crossref_primary_10_1142_S0218126625503529
crossref_primary_10_3390_app7111190
crossref_primary_10_1515_amcs_2017_0029
crossref_primary_10_1016_j_ijrefrig_2018_09_031
crossref_primary_10_32604_cmc_2022_023068
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_1175_JTECH_D_17_0226_1
crossref_primary_10_1109_ACCESS_2019_2940104
crossref_primary_10_1155_2022_9430526
crossref_primary_10_1007_s10489_021_02350_1
crossref_primary_10_1016_j_knosys_2016_09_027
crossref_primary_10_1007_s11047_016_9604_z
crossref_primary_10_1016_j_conbuildmat_2021_123396
crossref_primary_10_1080_1206212X_2019_1600831
crossref_primary_10_1155_2015_731494
crossref_primary_10_1155_2018_5736030
crossref_primary_10_1016_j_asoc_2018_05_030
crossref_primary_10_1007_s00521_017_2889_8
crossref_primary_10_1007_s11012_015_0179_z
crossref_primary_10_1016_j_applthermaleng_2014_08_057
crossref_primary_10_1177_0954405414555738
crossref_primary_10_3390_a7030363
crossref_primary_10_1007_s00521_020_05310_x
crossref_primary_10_1016_j_chemolab_2014_12_007
crossref_primary_10_1016_j_knosys_2014_08_022
crossref_primary_10_1080_23249935_2015_1099576
crossref_primary_10_1016_j_asoc_2019_105704
crossref_primary_10_1186_s40708_020_0102_9
Cites_doi 10.1109/72.97934
10.1007/s00521-007-0084-z
10.1080/10170660509509304
10.1108/10662249710171805
10.1016/S0031-3203(96)00142-2
10.1016/S0957-4174(00)00027-0
10.1287/mnsc.43.12.1676
10.1023/A:1010920819831
10.1109/72.80210
10.1007/BF01501509
10.1007/s00521-009-0274-y
10.1016/j.knosys.2011.07.001
ContentType Journal Article
Copyright Springer-Verlag London Limited 2011
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2011
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
DOI 10.1007/s00521-011-0769-1
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1433-3058
EndPage 791
ExternalDocumentID 27659255
10_1007_s00521_011_0769_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c351t-532307dc853e2998b006b6fd3aaacf6e98f3f6e041c46a832ecb5e98f26072233
IEDL.DBID RSV
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314844300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Mon Oct 06 18:00:25 EDT 2025
Mon Jul 21 09:16:53 EDT 2025
Sat Nov 29 02:58:55 EST 2025
Tue Nov 18 21:27:16 EST 2025
Fri Feb 21 02:34:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Principal component regression
Service satisfaction
General regression neural network
Data mining
Fruit fly optimization algorithm
OR algorithm
Data analysis
Neural computation
Questionnaire
Auction
Optimization method
Prediction theory
Neural network
Dependent variable
Independent variable
Optimization
Statistical regression
Genetic algorithm
Capacity
Classification
Detection
Sample survey
Service quality
Principal component analysis
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-532307dc853e2998b006b6fd3aaacf6e98f3f6e041c46a832ecb5e98f26072233
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1430861545
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1430861545
pascalfrancis_primary_27659255
crossref_citationtrail_10_1007_s00521_011_0769_1
crossref_primary_10_1007_s00521_011_0769_1
springer_journals_10_1007_s00521_011_0769_1
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References Aldridge, Forcht, Pierson (CR2) 1997; 7
Han, Ling, Huang (CR6) 2010; 19
Specht (CR12) 1990; 1
CR5
Kim, Han (CR3) 2000; 19
CR9
Su, Wong, Tsou (CR7) 2005; 22
CR14
Hand, Till (CR17) 2001; 45
CR13
Socha, Blum (CR8) 2007; 16
Paul, Chanev (CR4) 1997; 6
Pan (CR11) 2011
Bakos (CR1) 1997; 43
Specht (CR15) 1991; 2
Pan (CR10) 2011; 26
Bradley (CR16) 1997; 30
A Aldridge (769_CR2) 1997; 7
F Han (769_CR6) 2010; 19
JY Bakos (769_CR1) 1997; 43
DF Specht (769_CR12) 1990; 1
KJ Kim (769_CR3) 2000; 19
769_CR5
769_CR9
WT Pan (769_CR11) 2011
DJ Hand (769_CR17) 2001; 45
K Socha (769_CR8) 2007; 16
CT Su (769_CR7) 2005; 22
769_CR14
769_CR13
AP Bradley (769_CR16) 1997; 30
RJ Paul (769_CR4) 1997; 6
769_CR10
DF Specht (769_CR15) 1991; 2
References_xml – volume: 2
  start-page: 568
  issue: 6
  year: 1991
  end-page: 576
  ident: CR15
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– volume: 16
  start-page: 235
  issue: 3
  year: 2007
  end-page: 247
  ident: CR8
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 22
  start-page: 346
  issue: 4
  year: 2005
  end-page: 354
  ident: CR7
  article-title: A process parameters determination model by integrating artificial neural network and ant colony optimization
  publication-title: J Chin Inst Indus Eng
  doi: 10.1080/10170660509509304
– volume: 7
  start-page: 161
  year: 1997
  end-page: 169
  ident: CR2
  article-title: Get linked or get lost: marketing strategy for the internet
  publication-title: Internet Res
  doi: 10.1108/10662249710171805
– ident: CR14
– volume: 26
  start-page: 69
  year: 2011
  end-page: 74
  ident: CR10
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl Based Syst
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  end-page: 1159
  ident: CR16
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Patt Recognit
  doi: 10.1016/S0031-3203(96)00142-2
– ident: CR13
– volume: 19
  start-page: 125
  year: 2000
  end-page: 132
  ident: CR3
  article-title: Genetic algorithms approach to feature discrimination in artificial neural networks for the prediction of stock price index
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(00)00027-0
– year: 2011
  ident: CR11
  publication-title: Fruit fly optimization algorithm
– ident: CR9
– volume: 43
  start-page: 1676
  issue: 12
  year: 1997
  end-page: 1692
  ident: CR1
  article-title: Reducing buyer search costs: implications for electronic marketplaces
  publication-title: Manag Sci
  doi: 10.1287/mnsc.43.12.1676
– ident: CR5
– volume: 45
  start-page: 171
  issue: 2
  year: 2001
  end-page: 186
  ident: CR17
  article-title: A simple generalisation of the area under the ROC curve to multiple class classification problems
  publication-title: Mach Learn
  doi: 10.1023/A:1010920819831
– volume: 1
  start-page: 111
  issue: 1
  year: 1990
  end-page: 121
  ident: CR12
  article-title: Probabilistic neural networks and the polynomial adaline as complementary techniques for classification
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80210
– volume: 6
  start-page: 229
  issue: 4
  year: 1997
  end-page: 237
  ident: CR4
  article-title: Optimising a complex discrete event simulation model using a genetic algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/BF01501509
– volume: 19
  start-page: 255
  issue: 2
  year: 2010
  end-page: 261
  ident: CR6
  article-title: An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-009-0274-y
– volume: 19
  start-page: 125
  year: 2000
  ident: 769_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(00)00027-0
– volume: 43
  start-page: 1676
  issue: 12
  year: 1997
  ident: 769_CR1
  publication-title: Manag Sci
  doi: 10.1287/mnsc.43.12.1676
– volume: 1
  start-page: 111
  issue: 1
  year: 1990
  ident: 769_CR12
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80210
– ident: 769_CR10
  doi: 10.1016/j.knosys.2011.07.001
– ident: 769_CR14
– ident: 769_CR13
– volume: 22
  start-page: 346
  issue: 4
  year: 2005
  ident: 769_CR7
  publication-title: J Chin Inst Indus Eng
  doi: 10.1080/10170660509509304
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 769_CR16
  publication-title: Patt Recognit
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 7
  start-page: 161
  year: 1997
  ident: 769_CR2
  publication-title: Internet Res
  doi: 10.1108/10662249710171805
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 769_CR15
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– ident: 769_CR9
– volume: 19
  start-page: 255
  issue: 2
  year: 2010
  ident: 769_CR6
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-009-0274-y
– ident: 769_CR5
– volume: 16
  start-page: 235
  issue: 3
  year: 2007
  ident: 769_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 45
  start-page: 171
  issue: 2
  year: 2001
  ident: 769_CR17
  publication-title: Mach Learn
  doi: 10.1023/A:1010920819831
– volume: 6
  start-page: 229
  issue: 4
  year: 1997
  ident: 769_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/BF01501509
– volume-title: Fruit fly optimization algorithm
  year: 2011
  ident: 769_CR11
SSID ssj0004685
Score 2.3398182
Snippet When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 783
SubjectTerms Applied sciences
Artificial Intelligence
Calculus of variations and optimal control
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Data Mining and Knowledge Discovery
Drosophila
Exact sciences and technology
Formicidae
Image Processing and Computer Vision
Learning and adaptive systems
Linear inference, regression
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Original Article
Probability and statistics
Probability and Statistics in Computer Science
Sciences and techniques of general use
Statistics
Title Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network
URI https://link.springer.com/article/10.1007/s00521-011-0769-1
https://www.proquest.com/docview/1430861545
Volume 22
WOSCitedRecordID wos000314844300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batsw9NDbQ2E0XduxdF04gz51GOJI8uWxKwl9KCF0ayl7MbIsp4HELnYy6Nf0V3tk2aYZ7WB9MAYhycLnrnMDOJVBn9QGHjg6EKnD3YQ7cegLx-XC13rgaVa5C26v_PE4uLsLJ3Ued9lEuzcuyYpTt8lu5gbTmL70-F7okMmzTdIuMP0arn_evkiGrPpwktliQno4a1yZr22xJow-PMiS_ktqG1qsaZx_OUkr2TPqvOvU-7BXq5p4bnHjI2zo7AA6TRsHrKn6EJ6awiSYp1ha3oHli6wHnGVI3BalrTSLNmtopsp2tomen6JEOhNZ2hWwzWajYjVbYjp_xJw406JO-UQ5n-bFbHm_QJklOLWFr7HQUxuTm6EpskkjmQ1RP4Kb0fDXxaVT921wFBPu0hHMRJcnijQBTdIuMJQde2nCpJQq9XQYpIxefe4q7kliKVrFwoySbeWTusI-wVaWZ_ozoFbEfmPP41oknOkwHog4piUubSdFqrvQbwAYqbqouemtMY_acswVACICQGQAELldOGuXPNiKHv-a3FvDinbFwDf-aCG68K1Bk4gI03hbZKbzVUk2FSNz0WioXfje4EZUc4jy7U8e_9fsL7A7qBp0mKi4E9haFiv9FXbUH0KSogfbP4bjyXUPNifid6-ik2erIw6b
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KWthgtN0Xy9qlN9jThiGOJH88ltKQ0jSMLQt5M7IsZ4HEDnYy2F-zf7UnyzbN2AbrgzEYSRa-D9357n4H8EEGfTIbeODoQKQOdxPuxKEvHJcLX-uBp1kVLpiN_ckkmM_Dz3Udd9lkuzchyUpTt8Vu5g-mcX3p8r3QIZfnkNOBZQDzv3ydPSiGrPpwkttiUno4a0KZf1pi7zB6tpElfZfUNrTYszh_C5JWZ8_w5FG7PoXj2tTES8sbz-FAZy_gpGnjgLVUv4RfDTAJ5imWVndg-aDqAZcZkrZFaZFm0VYNLVXZjjbZ8wuUSHsiT7sitllsWOyWW0xXPzEnzbSuSz5RrhZ5sdx-X6PMElxY4Gss9MLm5GZoQDbpSWZT1F_Bt-H19Grk1H0bHMWEu3UEM9nliSJLQNNpFxjJjr00YVJKlXo6DFJGtz53FfckqRStYmGekm_lk7nCXkMnyzP9BlArUr-x53EtEs50GA9EHNMUl5aTItVd6DcEjFQNam56a6yiFo65IkBEBIgMASK3Cx_bKRuL6PGvwb09rmhnDHwTjxaiC-8bNolIME20RWY635XkUzFyF42F2oVPDW9EtYYo__7Kt_81-gKejKZ342h8M7k9g6eDqlmHyZA7h8622Ol3cKR-EMMUvUpK7gGHFg7l
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB5KW0SQtt5wtdYj-KSEbnZmcnkU69LSshTU0rcwmcysC9vJkmQFf41_1XMySeiKFqQPIRBmJpdzmfPl3Bh7p5Ixmg0iCUwibSDCQgR5GssgFDI2ZhIZ3roLri7i2Sy5vk4vuz6ndR_t3rskfU4DVWlyzfGqsMdD4hv9zSQYjEccpQHCnx1BcfQE179c3UqMbHtyIoSh8B7Be7fm35bY2JgerVSN38j65hYb1ucfDtN2H5ru3_sNDtheZ4LCR88zj9mWcU_Yft_eATppf8p-9QVLoLRQe50C9a1sCFg4QC0MylegBZ9NtND1MJqi6uegAJ8PEXjLBLTYtFovGrDLn1CixrrpUkFBLedltWi-34ByBcx9QWyozNzH6jqg4pt4xfnQ9Wfs2_Tz10-nQdfPIdBchk0gOUWdFxotBIO7YEISn0e24EopbSOTJpbjaSxCLSKFqsboXNJVxFwxmjH8Odt2pTMvGBiNajmPImFkIbhJ84nMc5wS4nJKWjNi456Yme6KnVPPjWU2lGluCZAhATIiQBaO2PthyspX-rhr8NEGhwwzJjH5qaUcsbc9y2QosOSFUc6U6xqxFkcYSZbriH3o-STrNEf971u-_K_Rb9iDy5NpdnE2O3_FHk7aHh4UOHfItptqbV6zXf0D-aU6agXmNztAF8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+service+satisfaction+in+web+auction+logistics+service+using+a+combination+of+Fruit+fly+optimization+algorithm+and+general+regression+neural+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Lin%2C+Su-Mei&rft.date=2013-03-01&rft.pub=Springer-Verlag&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=22&rft.issue=3-4&rft.spage=783&rft.epage=791&rft_id=info:doi/10.1007%2Fs00521-011-0769-1&rft.externalDocID=10_1007_s00521_011_0769_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon