Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network
When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 22; H. 3-4; S. 783 - 791 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer-Verlag
01.03.2013
Springer |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellers’ logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4–6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity. |
|---|---|
| AbstractList | When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellers’ logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4–6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity. When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony optimization algorithm to optimize parameters of artificial neural network models in their previous studies. In this paper, a brand new approach using Fruit fly optimization algorithm (FOA) is adopted to optimize artificial neural network model. First, we carried out principal component regression on the results data of a questionnaire survey on logistics quality and service satisfaction of online auction sellers to construct our logistics quality and service satisfaction detection model. Relevant principal components in the principal component regression analysis results were selected for independent variables, and overall satisfaction level toward auction sellersa logistics service as indicated in the questionnaire survey was selected as a dependent variable for sample data of this study. In the end, FOA-optimized general regression neural network (FOAGRNN), PSO-optimized general regression neural network (PSOGRNN), and other data mining techniques for ordinary general regression neural network were used to construct a logistics quality and service satisfaction detection model. In the study, 4a6 principal components in principal component regression analysis were selected as independent variables of the model. Analysis results of the study show that of the four data mining techniques, FOA-optimized GRNN model has the best detection capacity. |
| Author | Lin, Su-Mei |
| Author_xml | – sequence: 1 givenname: Su-Mei surname: Lin fullname: Lin, Su-Mei email: sally6212002@gmail.com, PI047@mail.oit.edu.tw organization: Department of Marketing and Logistics, China University of Technology |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27659255$$DView record in Pascal Francis |
| BookMark | eNp9kc1u1TAQhS1UJG4LD8DOGyQ2Af_ETrKsKgpIldjA2pr4OsHF1754HKrbl-FVcZrCgkUXo9HMfOcs5pyTs5iiI-Q1Z-84Y917ZEwJ3jBeq9NDw5-RHW-lbCRT_RnZsaGtF93KF-Qc8ZYx1upe7cjvywjhhB5pmii6_MtbRxGKxwls8SlSH-mdGyks2xjS7LF4i__oBX2cKVCbDqOP8EBVs-u8-EKncKLpWPzB328XCHPKvnw_UIh7OrvoMgSa3Zwd4gpEt6yb6Mpdyj9ekucTBHSvHvsF-Xb94evVp-bmy8fPV5c3jZWKl0ZJIVm3t72STgxDPzKmRz3tJQDYSbuhn2RtrOW21dBL4eyo1q3QrBNCygvydvM95vRzcVjMwaN1IUB0aUFTf8l6zVWrKvrmEQW0EKYM0Xo0x-wPkE9GdFoNQq1ct3E2J8TsJmN9eXhCyeCD4cys0ZktOlOjM2t0hlcl_0_51_wpjdg0WNk4u2xu05JruPiE6A-p1LEZ |
| CitedBy_id | crossref_primary_10_3390_rs13132541 crossref_primary_10_1007_s13042_017_0669_5 crossref_primary_10_1016_j_asoc_2015_01_022 crossref_primary_10_1016_j_energy_2016_09_065 crossref_primary_10_1016_j_knosys_2017_09_038 crossref_primary_10_1016_j_imu_2017_02_005 crossref_primary_10_1155_2020_6352539 crossref_primary_10_1016_j_amc_2014_02_005 crossref_primary_10_1016_j_knosys_2013_12_011 crossref_primary_10_1016_j_knosys_2016_05_019 crossref_primary_10_1016_j_eswa_2020_113486 crossref_primary_10_1016_j_knosys_2020_106437 crossref_primary_10_1016_j_knosys_2016_01_006 crossref_primary_10_1515_sspjce_2015_0005 crossref_primary_10_1155_2014_314797 crossref_primary_10_1155_2017_3423562 crossref_primary_10_1016_j_eswa_2016_08_039 crossref_primary_10_1016_j_knosys_2017_11_001 crossref_primary_10_1016_j_knosys_2020_106704 crossref_primary_10_1007_s10462_023_10451_1 crossref_primary_10_1007_s11227_016_1806_8 crossref_primary_10_1177_0958305X221120256 crossref_primary_10_3389_fmars_2022_985048 crossref_primary_10_1049_rpg2_12055 crossref_primary_10_3390_app10082822 crossref_primary_10_3390_sym9070109 crossref_primary_10_1007_s11047_016_9601_2 crossref_primary_10_1007_s00500_017_2733_1 crossref_primary_10_1016_j_neucom_2016_02_074 crossref_primary_10_1371_journal_pone_0165804 crossref_primary_10_1016_j_ins_2016_07_030 crossref_primary_10_1080_00207543_2016_1170226 crossref_primary_10_1016_j_autcon_2022_104189 crossref_primary_10_1109_ACCESS_2020_3020895 crossref_primary_10_1155_2015_124675 crossref_primary_10_3390_app6070199 crossref_primary_10_1016_j_amc_2015_07_030 crossref_primary_10_1002_cem_2729 crossref_primary_10_1371_journal_pone_0120976 crossref_primary_10_1080_09540091_2013_854735 crossref_primary_10_1016_j_aei_2020_101154 crossref_primary_10_1016_j_energy_2021_120153 crossref_primary_10_1016_j_ijhydene_2016_01_112 crossref_primary_10_1515_jag_2019_0025 crossref_primary_10_1016_j_eswa_2015_01_048 crossref_primary_10_1007_s42452_021_04579_4 crossref_primary_10_1016_j_cie_2014_11_005 crossref_primary_10_1155_2015_492195 crossref_primary_10_3390_en12173260 crossref_primary_10_1177_1687814019850720 crossref_primary_10_1016_j_knosys_2017_12_031 crossref_primary_10_1007_s11676_019_00980_3 crossref_primary_10_1142_S0218126625503529 crossref_primary_10_3390_app7111190 crossref_primary_10_1515_amcs_2017_0029 crossref_primary_10_1016_j_ijrefrig_2018_09_031 crossref_primary_10_32604_cmc_2022_023068 crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_1175_JTECH_D_17_0226_1 crossref_primary_10_1109_ACCESS_2019_2940104 crossref_primary_10_1155_2022_9430526 crossref_primary_10_1007_s10489_021_02350_1 crossref_primary_10_1016_j_knosys_2016_09_027 crossref_primary_10_1007_s11047_016_9604_z crossref_primary_10_1016_j_conbuildmat_2021_123396 crossref_primary_10_1080_1206212X_2019_1600831 crossref_primary_10_1155_2015_731494 crossref_primary_10_1155_2018_5736030 crossref_primary_10_1016_j_asoc_2018_05_030 crossref_primary_10_1007_s00521_017_2889_8 crossref_primary_10_1007_s11012_015_0179_z crossref_primary_10_1016_j_applthermaleng_2014_08_057 crossref_primary_10_1177_0954405414555738 crossref_primary_10_3390_a7030363 crossref_primary_10_1007_s00521_020_05310_x crossref_primary_10_1016_j_chemolab_2014_12_007 crossref_primary_10_1016_j_knosys_2014_08_022 crossref_primary_10_1080_23249935_2015_1099576 crossref_primary_10_1016_j_asoc_2019_105704 crossref_primary_10_1186_s40708_020_0102_9 |
| Cites_doi | 10.1109/72.97934 10.1007/s00521-007-0084-z 10.1080/10170660509509304 10.1108/10662249710171805 10.1016/S0031-3203(96)00142-2 10.1016/S0957-4174(00)00027-0 10.1287/mnsc.43.12.1676 10.1023/A:1010920819831 10.1109/72.80210 10.1007/BF01501509 10.1007/s00521-009-0274-y 10.1016/j.knosys.2011.07.001 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Limited 2011 2014 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag London Limited 2011 – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7QO 8FD FR3 P64 |
| DOI | 10.1007/s00521-011-0769-1 |
| DatabaseName | CrossRef Pascal-Francis Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics Applied Sciences Statistics |
| EISSN | 1433-3058 |
| EndPage | 791 |
| ExternalDocumentID | 27659255 10_1007_s00521_011_0769_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7QO 8FD FR3 P64 |
| ID | FETCH-LOGICAL-c351t-532307dc853e2998b006b6fd3aaacf6e98f3f6e041c46a832ecb5e98f26072233 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314844300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Mon Oct 06 18:00:25 EDT 2025 Mon Jul 21 09:16:53 EDT 2025 Sat Nov 29 02:58:55 EST 2025 Tue Nov 18 21:27:16 EST 2025 Fri Feb 21 02:34:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | Principal component regression Service satisfaction General regression neural network Data mining Fruit fly optimization algorithm OR algorithm Data analysis Neural computation Questionnaire Auction Optimization method Prediction theory Neural network Dependent variable Independent variable Optimization Statistical regression Genetic algorithm Capacity Classification Detection Sample survey Service quality Principal component analysis |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-532307dc853e2998b006b6fd3aaacf6e98f3f6e041c46a832ecb5e98f26072233 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1430861545 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1430861545 pascalfrancis_primary_27659255 crossref_citationtrail_10_1007_s00521_011_0769_1 crossref_primary_10_1007_s00521_011_0769_1 springer_journals_10_1007_s00521_011_0769_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag Springer |
| Publisher_xml | – name: Springer-Verlag – name: Springer |
| References | Aldridge, Forcht, Pierson (CR2) 1997; 7 Han, Ling, Huang (CR6) 2010; 19 Specht (CR12) 1990; 1 CR5 Kim, Han (CR3) 2000; 19 CR9 Su, Wong, Tsou (CR7) 2005; 22 CR14 Hand, Till (CR17) 2001; 45 CR13 Socha, Blum (CR8) 2007; 16 Paul, Chanev (CR4) 1997; 6 Pan (CR11) 2011 Bakos (CR1) 1997; 43 Specht (CR15) 1991; 2 Pan (CR10) 2011; 26 Bradley (CR16) 1997; 30 A Aldridge (769_CR2) 1997; 7 F Han (769_CR6) 2010; 19 JY Bakos (769_CR1) 1997; 43 DF Specht (769_CR12) 1990; 1 KJ Kim (769_CR3) 2000; 19 769_CR5 769_CR9 WT Pan (769_CR11) 2011 DJ Hand (769_CR17) 2001; 45 K Socha (769_CR8) 2007; 16 CT Su (769_CR7) 2005; 22 769_CR14 769_CR13 AP Bradley (769_CR16) 1997; 30 RJ Paul (769_CR4) 1997; 6 769_CR10 DF Specht (769_CR15) 1991; 2 |
| References_xml | – volume: 2 start-page: 568 issue: 6 year: 1991 end-page: 576 ident: CR15 article-title: A general regression neural network publication-title: IEEE Trans Neural Netw doi: 10.1109/72.97934 – volume: 16 start-page: 235 issue: 3 year: 2007 end-page: 247 ident: CR8 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0084-z – volume: 22 start-page: 346 issue: 4 year: 2005 end-page: 354 ident: CR7 article-title: A process parameters determination model by integrating artificial neural network and ant colony optimization publication-title: J Chin Inst Indus Eng doi: 10.1080/10170660509509304 – volume: 7 start-page: 161 year: 1997 end-page: 169 ident: CR2 article-title: Get linked or get lost: marketing strategy for the internet publication-title: Internet Res doi: 10.1108/10662249710171805 – ident: CR14 – volume: 26 start-page: 69 year: 2011 end-page: 74 ident: CR10 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowl Based Syst – volume: 30 start-page: 1145 issue: 7 year: 1997 end-page: 1159 ident: CR16 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Patt Recognit doi: 10.1016/S0031-3203(96)00142-2 – ident: CR13 – volume: 19 start-page: 125 year: 2000 end-page: 132 ident: CR3 article-title: Genetic algorithms approach to feature discrimination in artificial neural networks for the prediction of stock price index publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(00)00027-0 – year: 2011 ident: CR11 publication-title: Fruit fly optimization algorithm – ident: CR9 – volume: 43 start-page: 1676 issue: 12 year: 1997 end-page: 1692 ident: CR1 article-title: Reducing buyer search costs: implications for electronic marketplaces publication-title: Manag Sci doi: 10.1287/mnsc.43.12.1676 – ident: CR5 – volume: 45 start-page: 171 issue: 2 year: 2001 end-page: 186 ident: CR17 article-title: A simple generalisation of the area under the ROC curve to multiple class classification problems publication-title: Mach Learn doi: 10.1023/A:1010920819831 – volume: 1 start-page: 111 issue: 1 year: 1990 end-page: 121 ident: CR12 article-title: Probabilistic neural networks and the polynomial adaline as complementary techniques for classification publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80210 – volume: 6 start-page: 229 issue: 4 year: 1997 end-page: 237 ident: CR4 article-title: Optimising a complex discrete event simulation model using a genetic algorithm publication-title: Neural Comput Appl doi: 10.1007/BF01501509 – volume: 19 start-page: 255 issue: 2 year: 2010 end-page: 261 ident: CR6 article-title: An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0274-y – volume: 19 start-page: 125 year: 2000 ident: 769_CR3 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(00)00027-0 – volume: 43 start-page: 1676 issue: 12 year: 1997 ident: 769_CR1 publication-title: Manag Sci doi: 10.1287/mnsc.43.12.1676 – volume: 1 start-page: 111 issue: 1 year: 1990 ident: 769_CR12 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80210 – ident: 769_CR10 doi: 10.1016/j.knosys.2011.07.001 – ident: 769_CR14 – ident: 769_CR13 – volume: 22 start-page: 346 issue: 4 year: 2005 ident: 769_CR7 publication-title: J Chin Inst Indus Eng doi: 10.1080/10170660509509304 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 769_CR16 publication-title: Patt Recognit doi: 10.1016/S0031-3203(96)00142-2 – volume: 7 start-page: 161 year: 1997 ident: 769_CR2 publication-title: Internet Res doi: 10.1108/10662249710171805 – volume: 2 start-page: 568 issue: 6 year: 1991 ident: 769_CR15 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.97934 – ident: 769_CR9 – volume: 19 start-page: 255 issue: 2 year: 2010 ident: 769_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0274-y – ident: 769_CR5 – volume: 16 start-page: 235 issue: 3 year: 2007 ident: 769_CR8 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0084-z – volume: 45 start-page: 171 issue: 2 year: 2001 ident: 769_CR17 publication-title: Mach Learn doi: 10.1023/A:1010920819831 – volume: 6 start-page: 229 issue: 4 year: 1997 ident: 769_CR4 publication-title: Neural Comput Appl doi: 10.1007/BF01501509 – volume-title: Fruit fly optimization algorithm year: 2011 ident: 769_CR11 |
| SSID | ssj0004685 |
| Score | 2.3398182 |
| Snippet | When constructing classification and prediction models, most researchers used genetic algorithm, particle swarm optimization algorithm, or ant colony... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 783 |
| SubjectTerms | Applied sciences Artificial Intelligence Calculus of variations and optimal control Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer science; control theory; systems Data Mining and Knowledge Discovery Drosophila Exact sciences and technology Formicidae Image Processing and Computer Vision Learning and adaptive systems Linear inference, regression Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Original Article Probability and statistics Probability and Statistics in Computer Science Sciences and techniques of general use Statistics |
| Title | Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network |
| URI | https://link.springer.com/article/10.1007/s00521-011-0769-1 https://www.proquest.com/docview/1430861545 |
| Volume | 22 |
| WOSCitedRecordID | wos000314844300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batsw9NDbQ2E0XduxdF04gz51GOJI8uWxKwl9KCF0ayl7MbIsp4HELnYy6Nf0V3tk2aYZ7WB9MAYhycLnrnMDOJVBn9QGHjg6EKnD3YQ7cegLx-XC13rgaVa5C26v_PE4uLsLJ3Ued9lEuzcuyYpTt8lu5gbTmL70-F7okMmzTdIuMP0arn_evkiGrPpwktliQno4a1yZr22xJow-PMiS_ktqG1qsaZx_OUkr2TPqvOvU-7BXq5p4bnHjI2zo7AA6TRsHrKn6EJ6awiSYp1ha3oHli6wHnGVI3BalrTSLNmtopsp2tomen6JEOhNZ2hWwzWajYjVbYjp_xJw406JO-UQ5n-bFbHm_QJklOLWFr7HQUxuTm6EpskkjmQ1RP4Kb0fDXxaVT921wFBPu0hHMRJcnijQBTdIuMJQde2nCpJQq9XQYpIxefe4q7kliKVrFwoySbeWTusI-wVaWZ_ozoFbEfmPP41oknOkwHog4piUubSdFqrvQbwAYqbqouemtMY_acswVACICQGQAELldOGuXPNiKHv-a3FvDinbFwDf-aCG68K1Bk4gI03hbZKbzVUk2FSNz0WioXfje4EZUc4jy7U8e_9fsL7A7qBp0mKi4E9haFiv9FXbUH0KSogfbP4bjyXUPNifid6-ik2erIw6b |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KWthgtN0Xy9qlN9jThiGOJH88ltKQ0jSMLQt5M7IsZ4HEDnYy2F-zf7UnyzbN2AbrgzEYSRa-D9357n4H8EEGfTIbeODoQKQOdxPuxKEvHJcLX-uBp1kVLpiN_ckkmM_Dz3Udd9lkuzchyUpTt8Vu5g-mcX3p8r3QIZfnkNOBZQDzv3ydPSiGrPpwkttiUno4a0KZf1pi7zB6tpElfZfUNrTYszh_C5JWZ8_w5FG7PoXj2tTES8sbz-FAZy_gpGnjgLVUv4RfDTAJ5imWVndg-aDqAZcZkrZFaZFm0VYNLVXZjjbZ8wuUSHsiT7sitllsWOyWW0xXPzEnzbSuSz5RrhZ5sdx-X6PMElxY4Gss9MLm5GZoQDbpSWZT1F_Bt-H19Grk1H0bHMWEu3UEM9nliSJLQNNpFxjJjr00YVJKlXo6DFJGtz53FfckqRStYmGekm_lk7nCXkMnyzP9BlArUr-x53EtEs50GA9EHNMUl5aTItVd6DcEjFQNam56a6yiFo65IkBEBIgMASK3Cx_bKRuL6PGvwb09rmhnDHwTjxaiC-8bNolIME20RWY635XkUzFyF42F2oVPDW9EtYYo__7Kt_81-gKejKZ342h8M7k9g6eDqlmHyZA7h8622Ol3cKR-EMMUvUpK7gGHFg7l |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB5KW0SQtt5wtdYj-KSEbnZmcnkU69LSshTU0rcwmcysC9vJkmQFf41_1XMySeiKFqQPIRBmJpdzmfPl3Bh7p5Ixmg0iCUwibSDCQgR5GssgFDI2ZhIZ3roLri7i2Sy5vk4vuz6ndR_t3rskfU4DVWlyzfGqsMdD4hv9zSQYjEccpQHCnx1BcfQE179c3UqMbHtyIoSh8B7Be7fm35bY2JgerVSN38j65hYb1ucfDtN2H5ru3_sNDtheZ4LCR88zj9mWcU_Yft_eATppf8p-9QVLoLRQe50C9a1sCFg4QC0MylegBZ9NtND1MJqi6uegAJ8PEXjLBLTYtFovGrDLn1CixrrpUkFBLedltWi-34ByBcx9QWyozNzH6jqg4pt4xfnQ9Wfs2_Tz10-nQdfPIdBchk0gOUWdFxotBIO7YEISn0e24EopbSOTJpbjaSxCLSKFqsboXNJVxFwxmjH8Odt2pTMvGBiNajmPImFkIbhJ84nMc5wS4nJKWjNi456Yme6KnVPPjWU2lGluCZAhATIiQBaO2PthyspX-rhr8NEGhwwzJjH5qaUcsbc9y2QosOSFUc6U6xqxFkcYSZbriH3o-STrNEf971u-_K_Rb9iDy5NpdnE2O3_FHk7aHh4UOHfItptqbV6zXf0D-aU6agXmNztAF8k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+service+satisfaction+in+web+auction+logistics+service+using+a+combination+of+Fruit+fly+optimization+algorithm+and+general+regression+neural+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Lin%2C+Su-Mei&rft.date=2013-03-01&rft.pub=Springer-Verlag&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=22&rft.issue=3-4&rft.spage=783&rft.epage=791&rft_id=info:doi/10.1007%2Fs00521-011-0769-1&rft.externalDocID=10_1007_s00521_011_0769_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |