Residual Dense Network for Image Restoration

Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images; thereby, resulti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 7; pp. 2480 - 2495
Main Authors: Zhang, Yulun, Tian, Yapeng, Kong, Yu, Zhong, Bineng, Fu, Yun
Format: Journal Article
Language:English
Published: United States IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images; thereby, resulting in relatively-low performance. In this work, we propose a novel and efficient residual dense network (RDN) to address this problem in IR, by making a better tradeoff between efficiency and effectiveness in exploiting the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with several representative IR applications, single image super-resolution, Gaussian image denoising, image compression artifact reduction, and image deblurring. Experiments on benchmark and real-world datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task quantitatively and visually.
AbstractList Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images, thereby resulting in relatively-low performance. In this work, we propose a novel and efficient residual dense network (RDN) to address this problem in IR, by making a better tradeoff between efficiency and effectiveness in exploiting the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with several representative IR applications, single image super-resolution, Gaussian image denoising, image compression artifact reduction, and image deblurring. Experiments on benchmark and real-world datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task quantitatively and visually.
Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images; thereby, resulting in relatively-low performance. In this work, we propose a novel and efficient residual dense network (RDN) to address this problem in IR, by making a better tradeoff between efficiency and effectiveness in exploiting the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with several representative IR applications, single image super-resolution, Gaussian image denoising, image compression artifact reduction, and image deblurring. Experiments on benchmark and real-world datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task quantitatively and visually.Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images; thereby, resulting in relatively-low performance. In this work, we propose a novel and efficient residual dense network (RDN) to address this problem in IR, by making a better tradeoff between efficiency and effectiveness in exploiting the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with several representative IR applications, single image super-resolution, Gaussian image denoising, image compression artifact reduction, and image deblurring. Experiments on benchmark and real-world datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task quantitatively and visually.
Author Fu, Yun
Zhang, Yulun
Tian, Yapeng
Kong, Yu
Zhong, Bineng
Author_xml – sequence: 1
  givenname: Yulun
  orcidid: 0000-0002-2288-5079
  surname: Zhang
  fullname: Zhang, Yulun
  email: yulun100@gmail.com
  organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
– sequence: 2
  givenname: Yapeng
  surname: Tian
  fullname: Tian, Yapeng
  email: yapengtian@rochester.edu
  organization: Department of Computer Science, University of Rochester, Rochester, NY, USA
– sequence: 3
  givenname: Yu
  orcidid: 0000-0001-6271-4082
  surname: Kong
  fullname: Kong, Yu
  email: yu.kong@rit.edu
  organization: B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, USA
– sequence: 4
  givenname: Bineng
  orcidid: 0000-0003-3423-1539
  surname: Zhong
  fullname: Zhong, Bineng
  email: bnzhong@hqu.edu.cn
  organization: School of Computer Science and Technology, Huaqiao University, Xiamen, China
– sequence: 5
  givenname: Yun
  orcidid: 0000-0002-5098-2853
  surname: Fu
  fullname: Fu, Yun
  email: yunfu@ece.neu.edu
  organization: Department of Electrical and Computer Engineering and Khoury College of Computer Science, Northeastern University, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31985406$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlOwzAQQC0EomX5AZBQJC4cSBnbsWMfq7JVKosQnC0nmaBAGoOdCPH3pAsceuDky3sz47dHthvXICFHFEaUgr54fhzfTUcMGIyYlkowukWGjEqINdNsmwyBShYrxdSA7IXwBkATAXyXDDjVSiQgh-T8CUNVdLaOLrEJGN1j--X8e1Q6H03n9hWjHmidt23lmgOyU9o64OH63Scv11fPk9t49nAznYxncc4FbeMEs0JolCoVmS1kkRQyR6pSmRecWZ2laZkDyJxqnqEGUXKwKFKreQE0A8v3ydlq7od3n12_38yrkGNd2wZdFwzjiWSKS0h69HQDfXOdb_rrDBNcc8FEuqBO1lSXzbEwH76aW_9tfjv0gFoBuXcheCxNXrXLP7feVrWhYBbJzTK5WSQ36-S9yjbU3-n_SscrqULEP0FpmSQ85T_6pooI
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_JSTARS_2021_3129622
crossref_primary_10_3390_electronics11030418
crossref_primary_10_1049_ipr2_13268
crossref_primary_10_1016_j_autcon_2023_105022
crossref_primary_10_1049_ipr2_13264
crossref_primary_10_1109_TNNLS_2022_3144630
crossref_primary_10_1002_adpr_202300154
crossref_primary_10_1109_LSP_2022_3175411
crossref_primary_10_1016_j_bspc_2025_108119
crossref_primary_10_1016_j_jvcir_2024_104117
crossref_primary_10_1186_s42492_024_00165_8
crossref_primary_10_1109_TCSVT_2022_3147788
crossref_primary_10_1109_TPAMI_2021_3087485
crossref_primary_10_1016_j_image_2023_117057
crossref_primary_10_1016_j_isprsjprs_2022_08_002
crossref_primary_10_1109_TMI_2022_3194984
crossref_primary_10_1109_TGRS_2021_3095056
crossref_primary_10_1109_TNSE_2022_3190765
crossref_primary_10_1007_s00371_024_03565_2
crossref_primary_10_1109_TGRS_2024_3363504
crossref_primary_10_1016_j_knosys_2022_109776
crossref_primary_10_1109_TIP_2020_3044214
crossref_primary_10_1007_s11760_024_03092_6
crossref_primary_10_3390_rs15020445
crossref_primary_10_1016_j_eswa_2021_115815
crossref_primary_10_1016_j_jvcir_2025_104500
crossref_primary_10_1007_s00521_024_10893_w
crossref_primary_10_1109_TCSVT_2025_3556046
crossref_primary_10_1016_j_dsp_2024_104715
crossref_primary_10_3390_math10040653
crossref_primary_10_1109_JSEN_2025_3540119
crossref_primary_10_1007_s11633_023_1466_0
crossref_primary_10_1016_j_tsep_2024_102873
crossref_primary_10_1109_TCSVT_2024_3465875
crossref_primary_10_1109_TPAMI_2022_3170155
crossref_primary_10_1007_s13042_022_01725_1
crossref_primary_10_1109_TIP_2021_3093396
crossref_primary_10_1109_TRPMS_2022_3194408
crossref_primary_10_1109_ACCESS_2024_3367980
crossref_primary_10_3390_mi16010042
crossref_primary_10_1109_TGRS_2024_3489964
crossref_primary_10_3389_feart_2021_681869
crossref_primary_10_1007_s41095_022_0297_1
crossref_primary_10_1016_j_mri_2024_04_021
crossref_primary_10_1049_ell2_13057
crossref_primary_10_1016_j_jvcir_2024_104143
crossref_primary_10_1109_TIP_2022_3146625
crossref_primary_10_1016_j_bspc_2022_104062
crossref_primary_10_1109_TMM_2024_3407656
crossref_primary_10_1109_TGRS_2023_3337845
crossref_primary_10_1109_TMI_2024_3439573
crossref_primary_10_1109_TIM_2023_3343823
crossref_primary_10_1109_TGRS_2020_3047112
crossref_primary_10_1109_TNNLS_2021_3124370
crossref_primary_10_1109_JBHI_2022_3153902
crossref_primary_10_1109_TBC_2022_3152064
crossref_primary_10_1109_TPAMI_2024_3498003
crossref_primary_10_1109_TIP_2022_3226892
crossref_primary_10_1177_15910199221143168
crossref_primary_10_1109_LGRS_2023_3248069
crossref_primary_10_1109_TGRS_2021_3072381
crossref_primary_10_1002_mp_16115
crossref_primary_10_1109_TCE_2025_3565318
crossref_primary_10_1016_j_knosys_2022_109587
crossref_primary_10_1155_2022_7973404
crossref_primary_10_1109_ACCESS_2021_3132148
crossref_primary_10_1109_TPAMI_2022_3206870
crossref_primary_10_1016_j_ijleo_2023_170924
crossref_primary_10_1109_LSP_2021_3100263
crossref_primary_10_1109_TIFS_2023_3306181
crossref_primary_10_1007_s40747_024_01702_x
crossref_primary_10_1016_j_patcog_2024_110291
crossref_primary_10_1007_s10489_023_04856_2
crossref_primary_10_1016_j_jvcir_2024_104288
crossref_primary_10_1109_TIP_2021_3050856
crossref_primary_10_1109_TMM_2023_3252271
crossref_primary_10_1002_jbio_202300447
crossref_primary_10_1007_s00521_024_09440_4
crossref_primary_10_3390_rs16050841
crossref_primary_10_1088_1402_4896_ad619c
crossref_primary_10_1117_1_JEI_33_1_013027
crossref_primary_10_3390_electronics12183770
crossref_primary_10_1016_j_engappai_2025_110275
crossref_primary_10_1109_TCSVT_2023_3325906
crossref_primary_10_1016_j_isprsjprs_2023_04_016
crossref_primary_10_1177_02841851221141656
crossref_primary_10_1007_s10489_023_04513_8
crossref_primary_10_1109_TPAMI_2024_3406556
crossref_primary_10_3390_s23010251
crossref_primary_10_1007_s13735_022_00263_4
crossref_primary_10_1016_j_bspc_2023_104572
crossref_primary_10_1109_TMM_2022_3181457
crossref_primary_10_1016_j_jksuci_2023_101888
crossref_primary_10_1016_j_imavis_2024_105411
crossref_primary_10_1109_ACCESS_2024_3402953
crossref_primary_10_1109_ACCESS_2022_3148201
crossref_primary_10_1038_s41598_024_83944_w
crossref_primary_10_1109_ACCESS_2022_3222826
crossref_primary_10_1109_ACCESS_2021_3092425
crossref_primary_10_1109_TNNLS_2021_3083504
crossref_primary_10_1049_ell2_12285
crossref_primary_10_1109_TIP_2023_3274967
crossref_primary_10_1109_TIP_2020_3042059
crossref_primary_10_1109_TIP_2021_3091902
crossref_primary_10_3390_rs14225780
crossref_primary_10_1002_ima_22941
crossref_primary_10_1088_1361_6560_ada5a1
crossref_primary_10_1007_s00330_024_11288_0
crossref_primary_10_1007_s11045_023_00866_y
crossref_primary_10_1016_j_infrared_2025_105937
crossref_primary_10_1007_s11227_023_05286_0
crossref_primary_10_1109_ACCESS_2023_3335372
crossref_primary_10_1109_TCSVT_2022_3170689
crossref_primary_10_1080_01431161_2023_2221800
crossref_primary_10_1109_TCSVT_2025_3553160
crossref_primary_10_1109_TIM_2022_3216391
crossref_primary_10_1007_s10462_022_10305_2
crossref_primary_10_1016_j_compmedimag_2025_102597
crossref_primary_10_1109_TPAMI_2022_3194090
crossref_primary_10_1109_TMI_2022_3223677
crossref_primary_10_1142_S021964922550008X
crossref_primary_10_1117_1_JEI_33_3_033002
crossref_primary_10_1016_j_neunet_2024_107109
crossref_primary_10_1109_TIP_2020_3033617
crossref_primary_10_1007_s11760_025_04012_y
crossref_primary_10_1109_TCSVT_2021_3112548
crossref_primary_10_1088_1361_6560_ad7fc6
crossref_primary_10_1016_j_neunet_2024_106378
crossref_primary_10_2478_ijanmc_2025_0015
crossref_primary_10_1007_s41095_022_0277_5
crossref_primary_10_1016_j_engappai_2025_111438
crossref_primary_10_1109_TPAMI_2024_3357709
crossref_primary_10_1109_TCSVT_2023_3323483
crossref_primary_10_1007_s41870_022_01020_w
crossref_primary_10_3390_s23083963
crossref_primary_10_1016_j_dsp_2025_105026
crossref_primary_10_1016_j_oceaneng_2025_121862
crossref_primary_10_1109_TCE_2023_3280915
crossref_primary_10_1109_TIP_2022_3150294
crossref_primary_10_1109_ACCESS_2021_3061062
crossref_primary_10_1016_j_jgsce_2024_205395
crossref_primary_10_1109_TIP_2020_3019644
crossref_primary_10_1016_j_optlastec_2023_110401
crossref_primary_10_1109_TIP_2024_3497807
crossref_primary_10_1109_TGRS_2024_3394750
crossref_primary_10_1109_TETCI_2024_3369447
crossref_primary_10_1016_j_compmedimag_2025_102492
crossref_primary_10_1109_ACCESS_2020_3022882
crossref_primary_10_1007_s11042_023_16583_4
crossref_primary_10_1007_s11063_023_11213_4
crossref_primary_10_1016_j_infrared_2023_104837
crossref_primary_10_1109_TCBB_2024_3380410
crossref_primary_10_1109_OJCS_2025_3584205
crossref_primary_10_1038_s41598_025_91808_0
crossref_primary_10_1016_j_engappai_2023_106755
crossref_primary_10_1016_j_inffus_2025_103211
crossref_primary_10_1016_j_jvcir_2024_104302
crossref_primary_10_3390_rs16101688
crossref_primary_10_1016_j_displa_2024_102782
crossref_primary_10_1007_s11760_024_03764_3
crossref_primary_10_1109_TCE_2024_3409313
crossref_primary_10_3390_rs14236118
crossref_primary_10_3389_frai_2025_1616007
crossref_primary_10_1109_JSTSP_2021_3049641
crossref_primary_10_1016_j_ejrad_2025_112232
crossref_primary_10_1109_TCSVT_2020_3035664
crossref_primary_10_1088_1361_6560_ac0d0c
crossref_primary_10_1109_ACCESS_2023_3250616
crossref_primary_10_1109_TITS_2021_3120075
crossref_primary_10_1007_s11042_024_18409_3
crossref_primary_10_1109_JSTARS_2022_3220514
crossref_primary_10_1002_mp_16628
crossref_primary_10_1007_s10554_025_03403_z
crossref_primary_10_1007_s00371_024_03793_6
crossref_primary_10_1007_s10489_023_04566_9
crossref_primary_10_1109_TPAMI_2024_3401048
crossref_primary_10_1109_LSP_2025_3585820
crossref_primary_10_1007_s11042_023_17844_y
crossref_primary_10_1049_ipr2_12368
crossref_primary_10_1109_TIP_2022_3197976
crossref_primary_10_1007_s11263_023_01970_z
crossref_primary_10_1109_TNNLS_2023_3243666
crossref_primary_10_1137_23M1545859
crossref_primary_10_1016_j_cviu_2024_104118
crossref_primary_10_1016_j_knosys_2022_109054
crossref_primary_10_1016_j_dcn_2024_101397
crossref_primary_10_1109_TMI_2021_3066318
crossref_primary_10_1109_TIM_2025_3527523
crossref_primary_10_1007_s10994_025_06814_0
crossref_primary_10_1016_j_imavis_2024_105346
crossref_primary_10_1016_j_inffus_2023_01_018
crossref_primary_10_1016_j_knosys_2025_113048
crossref_primary_10_1088_1361_6560_ad3889
crossref_primary_10_1016_j_eswa_2025_126492
crossref_primary_10_1109_ACCESS_2020_2999965
crossref_primary_10_1109_TGRS_2021_3071799
crossref_primary_10_3390_electronics13224372
crossref_primary_10_1088_1361_6560_aced34
crossref_primary_10_1016_j_patcog_2024_110676
crossref_primary_10_3390_electronics13101867
crossref_primary_10_1049_ipr2_12279
crossref_primary_10_1049_ipr2_12394
crossref_primary_10_1016_j_eswa_2024_123954
crossref_primary_10_1007_s10044_024_01393_7
crossref_primary_10_7717_peerj_cs_970
crossref_primary_10_1109_LSP_2023_3296039
crossref_primary_10_1109_TWC_2024_3364666
crossref_primary_10_1016_j_asoc_2023_110535
crossref_primary_10_1016_j_mri_2022_03_003
crossref_primary_10_1016_j_procs_2024_10_264
crossref_primary_10_1145_3566125
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_1109_ACCESS_2021_3091971
crossref_primary_10_1109_ACCESS_2022_3176605
crossref_primary_10_1109_ACCESS_2021_3091975
crossref_primary_10_1109_TCSVT_2024_3351933
crossref_primary_10_1103_PhysRevD_106_063023
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1016_j_patcog_2024_110563
crossref_primary_10_1109_JSTSP_2024_3386056
crossref_primary_10_3389_fphys_2023_1138257
crossref_primary_10_1016_j_image_2025_117286
crossref_primary_10_1109_JSEN_2024_3389050
crossref_primary_10_3390_electronics14132582
crossref_primary_10_1038_s41597_022_01269_7
crossref_primary_10_1109_TPAMI_2024_3367879
crossref_primary_10_1109_TCSVT_2022_3202034
crossref_primary_10_1007_s10489_023_05122_1
crossref_primary_10_1109_TIP_2021_3086049
crossref_primary_10_1109_TGRS_2024_3368760
crossref_primary_10_3390_app131910650
crossref_primary_10_1016_j_neucom_2022_09_058
crossref_primary_10_1109_TIP_2024_3355818
crossref_primary_10_1049_ipr2_12844
crossref_primary_10_1016_j_cviu_2023_103725
crossref_primary_10_1109_TCSVT_2023_3241920
crossref_primary_10_1109_LSP_2021_3096456
crossref_primary_10_1109_TIM_2023_3287262
crossref_primary_10_1109_TMM_2024_3350917
crossref_primary_10_1109_TGRS_2025_3590753
crossref_primary_10_1002_jsid_1269
crossref_primary_10_1016_j_dsp_2025_105309
crossref_primary_10_1371_journal_pone_0309434
crossref_primary_10_1016_j_dt_2023_12_007
crossref_primary_10_1016_j_jag_2022_103019
crossref_primary_10_1186_s13040_021_00236_z
crossref_primary_10_1016_j_acra_2023_01_023
crossref_primary_10_1007_s00500_024_09745_5
crossref_primary_10_1007_s11042_023_17035_9
crossref_primary_10_1016_j_patcog_2022_108909
crossref_primary_10_3390_photonics8090376
crossref_primary_10_1109_TMI_2021_3076191
crossref_primary_10_1007_s11760_023_02708_7
crossref_primary_10_1109_TCSVT_2021_3138431
crossref_primary_10_1109_TPAMI_2021_3106790
crossref_primary_10_1038_s41598_025_02503_z
crossref_primary_10_1109_TIP_2022_3231741
crossref_primary_10_1016_j_asoc_2025_113010
crossref_primary_10_1016_j_anucene_2023_109820
crossref_primary_10_1016_j_image_2023_116971
crossref_primary_10_1109_TGRS_2022_3232384
crossref_primary_10_1109_TPAMI_2025_3546870
crossref_primary_10_1049_ipr2_12746
crossref_primary_10_1109_TSMC_2024_3429345
crossref_primary_10_1109_ACCESS_2024_3415420
crossref_primary_10_1109_TPAMI_2024_3471571
crossref_primary_10_1007_s11042_023_17494_0
crossref_primary_10_1002_cav_2201
crossref_primary_10_1148_radiol_221372
crossref_primary_10_1109_ACCESS_2023_3341041
crossref_primary_10_1109_TOH_2021_3078889
crossref_primary_10_1109_JSEN_2024_3429527
crossref_primary_10_1016_j_imavis_2025_105467
crossref_primary_10_1016_j_compbiomed_2023_107632
crossref_primary_10_1109_TPAMI_2021_3070382
crossref_primary_10_1137_22M1536996
crossref_primary_10_3390_rs17050935
crossref_primary_10_3390_sym15101850
crossref_primary_10_1016_j_dsp_2021_103270
crossref_primary_10_1007_s11235_022_00985_0
crossref_primary_10_1109_JBHI_2023_3341250
crossref_primary_10_1016_j_compbiomed_2023_107409
crossref_primary_10_1109_TNNLS_2020_3048031
crossref_primary_10_1016_j_knosys_2023_111156
crossref_primary_10_1109_TMI_2022_3189759
crossref_primary_10_1007_s11227_024_06646_0
crossref_primary_10_3389_frwa_2021_800369
crossref_primary_10_1007_s10489_022_04313_6
crossref_primary_10_1109_JSTARS_2024_3409808
crossref_primary_10_1148_radiol_220189
crossref_primary_10_1016_j_compbiomed_2024_108914
crossref_primary_10_1038_s41598_022_16223_1
crossref_primary_10_1109_TPAMI_2025_3545571
crossref_primary_10_3390_s20133724
crossref_primary_10_1109_ACCESS_2023_3240402
crossref_primary_10_1007_s00138_023_01416_z
crossref_primary_10_1007_s11263_023_01793_y
crossref_primary_10_1109_JAS_2023_123543
crossref_primary_10_3390_math11030651
crossref_primary_10_1007_s11042_024_19450_y
crossref_primary_10_1007_s11760_024_03395_8
crossref_primary_10_1109_LSP_2020_3023341
crossref_primary_10_1016_j_cviu_2025_104491
crossref_primary_10_1109_TCYB_2022_3170472
crossref_primary_10_3389_fenrg_2022_1038819
crossref_primary_10_1109_TKDE_2022_3144310
crossref_primary_10_1109_TGRS_2024_3401843
crossref_primary_10_1109_TIP_2023_3341700
crossref_primary_10_1016_j_compbiomed_2022_106294
crossref_primary_10_1109_TIM_2022_3192280
crossref_primary_10_1177_01423312231164455
crossref_primary_10_1016_j_neunet_2024_106555
crossref_primary_10_1109_TGRS_2022_3201206
crossref_primary_10_1109_TCSVT_2022_3188524
crossref_primary_10_1109_TPAMI_2024_3432812
crossref_primary_10_1016_j_patrec_2022_12_021
crossref_primary_10_1016_j_knosys_2023_111116
crossref_primary_10_3233_XST_211098
crossref_primary_10_1177_14727978251360525
crossref_primary_10_3390_s23052439
crossref_primary_10_1145_3694973
crossref_primary_10_1109_ACCESS_2022_3162608
crossref_primary_10_1109_TMI_2021_3090257
crossref_primary_10_1109_TPAMI_2023_3241756
crossref_primary_10_1109_TBC_2023_3247953
crossref_primary_10_1038_s41598_022_26647_4
crossref_primary_10_1109_TPAMI_2025_3568690
crossref_primary_10_1016_j_neucom_2024_128533
crossref_primary_10_1007_s11263_025_02553_w
crossref_primary_10_1016_j_jag_2024_103909
crossref_primary_10_1016_j_neunet_2024_106686
crossref_primary_10_1088_1361_6560_acc921
crossref_primary_10_1007_s11063_022_11100_4
crossref_primary_10_1016_j_patcog_2024_110929
crossref_primary_10_32604_cmes_2023_029181
crossref_primary_10_1109_TIP_2024_3403034
crossref_primary_10_1007_s10489_021_02489_x
crossref_primary_10_1007_s11263_022_01705_6
crossref_primary_10_1007_s10032_024_00499_2
crossref_primary_10_1007_s11042_024_19128_5
crossref_primary_10_1109_TMM_2021_3079697
crossref_primary_10_1109_TGRS_2024_3359095
crossref_primary_10_1109_TTHZ_2021_3132160
crossref_primary_10_1007_s11042_024_18140_z
crossref_primary_10_1016_j_dsp_2023_104052
crossref_primary_10_1109_TCSVT_2023_3317486
crossref_primary_10_1007_s11042_022_14194_z
crossref_primary_10_1109_TCBB_2022_3205217
crossref_primary_10_3390_biomedicines11082225
crossref_primary_10_1109_JBHI_2023_3325241
crossref_primary_10_1038_s41598_024_60139_x
crossref_primary_10_1007_s11042_022_13693_3
crossref_primary_10_1109_TIM_2023_3261929
crossref_primary_10_1109_TNNLS_2020_2996498
crossref_primary_10_1109_JBHI_2021_3087407
crossref_primary_10_1109_TCDS_2020_3017100
crossref_primary_10_3390_s23239575
crossref_primary_10_3390_app14177824
crossref_primary_10_1007_s00371_023_02990_z
crossref_primary_10_1016_j_compbiomed_2023_107584
crossref_primary_10_1109_ACCESS_2024_3407750
crossref_primary_10_1109_TPAMI_2024_3516874
crossref_primary_10_1109_TIP_2024_3404253
crossref_primary_10_3390_electronics11152445
crossref_primary_10_1109_TGRS_2024_3357812
crossref_primary_10_1016_j_asoc_2024_112395
crossref_primary_10_1109_TIP_2023_3333564
crossref_primary_10_1016_j_cag_2023_05_005
crossref_primary_10_1016_j_eswa_2025_129065
crossref_primary_10_1109_LGRS_2023_3236691
crossref_primary_10_1109_LSP_2025_3563125
crossref_primary_10_1016_j_patcog_2021_108349
crossref_primary_10_1109_TCSVT_2022_3192099
crossref_primary_10_3390_jimaging7070103
crossref_primary_10_1109_TPAMI_2022_3167175
crossref_primary_10_1109_ACCESS_2023_3233976
crossref_primary_10_1007_s11042_022_14108_z
crossref_primary_10_1109_TIP_2024_3512362
crossref_primary_10_1109_JSTARS_2023_3294619
crossref_primary_10_1016_j_neucom_2023_127066
crossref_primary_10_1016_j_engappai_2023_107051
crossref_primary_10_1007_s00371_023_02805_1
crossref_primary_10_1093_mnras_stac2437
crossref_primary_10_1109_JSTARS_2024_3356523
crossref_primary_10_1109_TBC_2021_3068862
crossref_primary_10_1016_j_ascom_2024_100822
crossref_primary_10_3390_app11177803
crossref_primary_10_1109_ACCESS_2021_3052946
crossref_primary_10_1007_s11263_023_01812_y
crossref_primary_10_1007_s11760_022_02262_8
crossref_primary_10_3390_s22218127
crossref_primary_10_1016_j_neunet_2023_11_008
crossref_primary_10_3390_s23031486
crossref_primary_10_3390_a14040109
crossref_primary_10_3390_s23167044
crossref_primary_10_1016_j_patrec_2025_03_006
crossref_primary_10_1109_TNNLS_2021_3057439
crossref_primary_10_1016_j_icte_2022_07_010
crossref_primary_10_4218_etrij_2024_0295
crossref_primary_10_1016_j_eswa_2025_127905
crossref_primary_10_1080_09540091_2022_2078792
crossref_primary_10_1109_TCSVT_2023_3267133
crossref_primary_10_1007_s41870_024_02315_w
crossref_primary_10_1007_s10489_021_02891_5
crossref_primary_10_1002_aisy_202200004
crossref_primary_10_1109_TPAMI_2022_3183612
crossref_primary_10_1007_s10278_023_00786_0
crossref_primary_10_1109_TIM_2024_3366569
crossref_primary_10_3390_s22218580
crossref_primary_10_1007_s10489_022_04222_8
crossref_primary_10_1016_j_ins_2022_07_122
crossref_primary_10_1016_j_patcog_2023_109602
crossref_primary_10_1007_s11760_023_02779_6
crossref_primary_10_1109_JAS_2024_124521
crossref_primary_10_1016_j_jvcir_2023_103994
crossref_primary_10_1145_3570164
crossref_primary_10_1109_TIP_2023_3242774
crossref_primary_10_1109_JPHOT_2022_3221726
crossref_primary_10_1109_TCSVT_2021_3104305
crossref_primary_10_1002_gamm_202470004
crossref_primary_10_1109_ACCESS_2024_3431527
crossref_primary_10_1364_AO_466173
crossref_primary_10_1016_j_optlaseng_2025_108973
crossref_primary_10_1016_j_undsp_2024_06_005
crossref_primary_10_1109_TCE_2025_3565390
crossref_primary_10_3390_app10175764
crossref_primary_10_3390_app13116567
crossref_primary_10_1007_s11760_023_02768_9
crossref_primary_10_1016_j_patcog_2023_109719
Cites_doi 10.1109/TIP.2003.819861
10.1007/978-3-030-01234-2_18
10.1162/neco.1989.1.4.541
10.1109/ICCV.2015.62
10.1007/s11042-016-4020-z
10.1109/ICCV.2015.73
10.1109/CVPR.2017.243
10.1109/ICCV.2001.937655
10.5201/ipol.2015.125
10.1109/ICCV.2017.514
10.1109/TPAMI.2016.2596743
10.1109/CVPR.2015.7298594
10.1007/978-3-319-10593-2_13
10.1109/TPAMI.2018.2865304
10.1109/CVPR.2015.7299156
10.1109/CVPR.2018.00259
10.1109/CVPR.2016.182
10.1109/TIP.2007.901238
10.1109/TCSVT.2019.2920407
10.1109/TIP.2012.2235847
10.1109/CVPRW.2018.00134
10.1109/TIP.2017.2662206
10.1007/978-3-319-46475-6_25
10.1109/CVPR.2016.206
10.1109/TIP.2018.2839891
10.1109/CVPR.2018.00960
10.1007/s11263-015-0808-y
10.1109/CVPR.2016.207
10.1007/978-3-642-40760-4_2
10.1109/CVPR.2018.00262
10.1109/CVPR.2016.181
10.1109/CVPRW.2018.00121
10.1109/CVPR.2016.90
10.1109/CVPR.2017.298
10.1109/CVPR.2018.00079
10.1109/CVPRW.2017.149
10.1109/ICCV.2013.241
10.5244/C.26.135
10.1109/TIP.2006.881969
10.1109/TPAMI.2018.2873610
10.1109/BTAS.2010.5634490
10.1007/978-3-642-33715-4_6
10.1007/978-3-642-33786-4_9
10.1109/TPAMI.2015.2439281
10.1109/TIP.2012.2208977
10.1109/CVPR.2017.19
10.1109/TIP.2006.877407
10.1109/CVPR.2017.300
10.1109/CVPR.2018.00344
10.1109/TIP.2007.891788
10.1109/ICCV.2015.50
10.1109/CVPRW.2017.151
10.1109/CVPR.2018.00337
10.1109/ICIP.2007.4378954
10.1109/TIP.2014.2305844
10.1109/CVPR.2015.7299003
10.1109/ICCV.2017.486
10.1109/ICCV.2017.125
10.1109/CVPR.2017.618
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.2968521
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2495
ExternalDocumentID 31985406
10_1109_TPAMI_2020_2968521
8964437
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Army Research Office
  grantid: W911NF-17-1-0367
  funderid: 10.13039/100000183
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-4ebd59e6875bad6d4d6ce1876cd32a9b77fc006c193be905f30ae57a93d01b0a3
IEDL.DBID RIE
ISICitedReferencesCount 588
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692540900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 23 09:33:19 EST 2025
Sun Jun 29 15:19:20 EDT 2025
Wed Feb 19 02:31:09 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 21:01:02 EST 2025
Wed Aug 27 02:51:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4ebd59e6875bad6d4d6ce1876cd32a9b77fc006c193be905f30ae57a93d01b0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2288-5079
0000-0003-3423-1539
0000-0002-5098-2853
0000-0001-6271-4082
PMID 31985406
PQID 2539352574
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_2539352574
crossref_citationtrail_10_1109_TPAMI_2020_2968521
proquest_miscellaneous_2346283604
crossref_primary_10_1109_TPAMI_2020_2968521
ieee_primary_8964437
pubmed_primary_31985406
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kingma (ref69) 2014
ref12
timofte (ref13) 2014
ref15
ref58
ref14
ref52
ref55
ref11
ref10
ref17
ref16
ref19
ref18
krizhevsky (ref53) 2012
ref51
ref50
wang (ref42) 2018
glorot (ref57) 2011
ref48
ref47
ref41
ref44
ref43
ref49
mao (ref22) 2016
ref8
simonyan (ref54) 0
ref7
ref9
ref4
ref6
ref5
karras (ref3) 2018
ref35
ref34
ref37
ref36
ref75
ref74
ref30
ref33
ioffe (ref56) 2015
ref76
ref32
lee (ref31) 2015
blau (ref40) 2018
zeyde (ref59) 2010
ref2
ref1
ref39
liu (ref46) 2018
ref71
szegedy (ref28) 2017
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
sheikh (ref65) 2005
ref66
ref21
ref27
ref29
haris (ref38) 2018
ref60
ref62
ref61
plötz (ref45) 2018
References_xml – start-page: 2810
  year: 2016
  ident: ref22
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref67
  doi: 10.1109/TIP.2003.819861
– ident: ref43
  doi: 10.1007/978-3-030-01234-2_18
– ident: ref52
  doi: 10.1162/neco.1989.1.4.541
– ident: ref75
  doi: 10.1109/ICCV.2015.62
– ident: ref64
  doi: 10.1007/s11042-016-4020-z
– ident: ref25
  doi: 10.1109/ICCV.2015.73
– ident: ref30
  doi: 10.1109/CVPR.2017.243
– ident: ref60
  doi: 10.1109/ICCV.2001.937655
– ident: ref76
  doi: 10.5201/ipol.2015.125
– ident: ref19
  doi: 10.1109/ICCV.2017.514
– ident: ref21
  doi: 10.1109/TPAMI.2016.2596743
– ident: ref55
  doi: 10.1109/CVPR.2015.7298594
– ident: ref15
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref63
  doi: 10.1109/TPAMI.2018.2865304
– ident: ref17
  doi: 10.1109/CVPR.2015.7299156
– ident: ref41
  doi: 10.1109/CVPR.2018.00259
– ident: ref18
  doi: 10.1109/CVPR.2016.182
– ident: ref71
  doi: 10.1109/TIP.2007.901238
– ident: ref33
  doi: 10.1109/TCSVT.2019.2920407
– ident: ref5
  doi: 10.1109/TIP.2012.2235847
– ident: ref39
  doi: 10.1109/CVPRW.2018.00134
– start-page: 63
  year: 2018
  ident: ref42
  article-title: ESRGAN: Enhanced super-resolution generative adversarial networks
  publication-title: Proc Eur Conf Comput Vis Workshop
– ident: ref23
  doi: 10.1109/TIP.2017.2662206
– ident: ref48
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref70
  doi: 10.1109/CVPR.2016.206
– ident: ref24
  doi: 10.1109/TIP.2018.2839891
– start-page: 315
  year: 2011
  ident: ref57
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2005
  ident: ref65
  article-title: Live image quality assessment database release 2
– ident: ref36
  doi: 10.1109/CVPR.2018.00960
– ident: ref6
  doi: 10.1007/s11263-015-0808-y
– ident: ref49
  doi: 10.1109/CVPR.2016.207
– ident: ref2
  doi: 10.1007/978-3-642-40760-4_2
– ident: ref32
  doi: 10.1109/CVPR.2018.00262
– ident: ref26
  doi: 10.1109/CVPR.2016.181
– ident: ref44
  doi: 10.1109/CVPRW.2018.00121
– ident: ref51
  doi: 10.1109/CVPR.2016.90
– start-page: 4278
  year: 2017
  ident: ref28
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref47
  doi: 10.1109/CVPR.2017.298
– ident: ref34
  doi: 10.1109/CVPR.2018.00079
– ident: ref37
  doi: 10.1109/CVPRW.2017.149
– ident: ref12
  doi: 10.1109/ICCV.2013.241
– ident: ref58
  doi: 10.5244/C.26.135
– ident: ref4
  doi: 10.1109/TIP.2006.881969
– start-page: 562
  year: 2015
  ident: ref31
  article-title: Deeply-supervised nets
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2018
  ident: ref3
  article-title: Progressive growing of GANs for improved quality, stability, and variation
  publication-title: Proc Int Conf Learn Representations
– year: 2014
  ident: ref69
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– start-page: 711
  year: 2010
  ident: ref59
  article-title: On single image scale-up using sparse-representations
  publication-title: Proc 7th Int Conf Curves Surfaces
– start-page: 1095
  year: 2018
  ident: ref45
  article-title: Neural nearest neighbors networks
  publication-title: Proc Int Conf Neural Inf Process
– year: 0
  ident: ref54
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: in Proc Int Conf Learn Representations
– ident: ref7
  doi: 10.1109/TPAMI.2018.2873610
– start-page: 334
  year: 2018
  ident: ref40
  article-title: 2018 PIRM challenge on perceptual image super-resolution
  publication-title: Proc Eur Conf Comput Vis Workshop
– ident: ref1
  doi: 10.1109/BTAS.2010.5634490
– start-page: 111
  year: 2014
  ident: ref13
  article-title: A+: Adjusted anchored neighborhood regression for fast super-resolution
  publication-title: Proc IEEE Asian Conf Comput Vis
– ident: ref73
  doi: 10.1007/978-3-642-33715-4_6
– ident: ref68
  doi: 10.1007/978-3-642-33786-4_9
– start-page: 1680
  year: 2018
  ident: ref46
  article-title: Non-local recurrent network for image restoration
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref61
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref11
  doi: 10.1109/TIP.2012.2208977
– ident: ref50
  doi: 10.1109/CVPR.2017.19
– ident: ref10
  doi: 10.1109/TIP.2006.877407
– ident: ref8
  doi: 10.1109/CVPR.2017.300
– start-page: 1664
  year: 2018
  ident: ref38
  article-title: Deep back-projection networks for super-resolution
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref20
  doi: 10.1109/CVPR.2018.00344
– ident: ref66
  doi: 10.1109/TIP.2007.891788
– ident: ref62
  doi: 10.1109/ICCV.2015.50
– ident: ref27
  doi: 10.1109/CVPRW.2017.151
– start-page: 1097
  year: 2012
  ident: ref53
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref35
  doi: 10.1109/CVPR.2018.00337
– ident: ref72
  doi: 10.1109/ICIP.2007.4378954
– ident: ref14
  doi: 10.1109/TIP.2014.2305844
– ident: ref16
  doi: 10.1109/CVPR.2015.7299003
– ident: ref9
  doi: 10.1109/ICCV.2017.486
– ident: ref74
  doi: 10.1109/ICCV.2017.125
– start-page: 448
  year: 2015
  ident: ref56
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref29
  doi: 10.1109/CVPR.2017.618
SSID ssj0014503
Score 2.7559896
Snippet Recently, deep convolutional neural network (CNN) has achieved great success for image restoration (IR) and provided hierarchical features at the same time....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2480
SubjectTerms Artificial neural networks
compression artifact reduction
Feature extraction
hierarchical features
Image coding
Image compression
image deblurring
Image denoising
Image quality
Image resolution
Image restoration
image super-resolution
Noise reduction
Residual dense network
Task analysis
Training
Title Residual Dense Network for Image Restoration
URI https://ieeexplore.ieee.org/document/8964437
https://www.ncbi.nlm.nih.gov/pubmed/31985406
https://www.proquest.com/docview/2539352574
https://www.proquest.com/docview/2346283604
Volume 43
WOSCitedRecordID wos000692540900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSxxBEC5URPTBO7pGZQTfdHSmz-lHiYpCsoiYsG_DTHc1CGZX3F1_v9U9BwkkgbwNTM1B1_VVdx0Ap95KIbwQqUfBUqF5lRJuZiTLBfLcaeHjnu6Pr3o4LEYj87AA530tDCLG5DO8CJfxLN9N7DxslV0Whrw314uwqLVuarX6EwMh4xRkQjCk4RRGdAUymbl8erj6dk-hIMsumFEFOaxVWCHRKwitqN_8URyw8nesGX3O7cb__e0mrLfYMrlqhGELFnC8DRvd3IakVeNtWPulCeEOnD_iNFZkJdcU0mIybBLDE0Kzyf1PMjfJY5w-E1m4C99vb56-3KXtDIXUcpnPUoG1kwYVhSV15ZQTTlnMyQRax1llaq29JcWzhONqNJn0PKtQ6spwl-V1VvFPsDSejHEfkpx5rnJnnVNMeClqLw0rvNIVF0ppM4C8W8nStg3Gw5yLlzIGGpkpIyPKwIiyZcQAzvpnXpv2Gv-k3gnL3FO2KzyAw45hZauB05LJUHRMBkkM4KS_TboTDkSqMU7mRMNDZS5XGdHsNYzu393Jx8Gfv_kZVlnIbomJu4ewNHub4xEs2_fZ8_TtmAR0VBxHAf0AaTLcZg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gGMUHUEA4RK2Jb1Jo97P7SATCxeNCyGl4a9rd2YQE7wx3x9_P7PYjmqCJb006223mY-c3uzM7AJ-9lUJ4IVKPgqVC8yol3MxIlwvkudPCxz3dHyM9Hhc3N-ZqBQ77WhhEjMlneBQe41m-m9ll2Co7Lgx5b66fwRpNwPKmWqs_MxAy9kEmDEM2ToFEVyKTmePJ1cnlkIJBlh0xowpyWevwgpSvILyi_vBIscXK39Fm9Drnm__3v69ho0WXyUmjDm9gBadbsNl1bkhaQ96CV79dQ7gNh9c4jzVZySkFtZiMm9TwhPBsMvxJC05yHfvPRCHuwPfzs8nXi7TtopBaLvNFKrB20qCiwKSunHLCKYs5LYLWcVaZWmtvyfQsIbkaTSY9zyqUujLcZXmdVfwtrE5nU9yDJGeeq9xZ5xQTXoraS8MKr3TFhVLaDCDvOFna9orx0OniroyhRmbKKIgyCKJsBTGAL_2YX80FG_-k3g5s7ilbDg_goBNY2drgvGQylB3TkiQG8Kl_TdYTjkSqKc6WRMNDbS5XGdHsNoLuv93px_7Tc36ElxeTy1E5Go6_vYN1FnJdYhrvAawu7pf4Hp7bh8Xt_P5DVNNH2GbexQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Dense+Network+for+Image+Restoration&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Yulun&rft.au=Tian%2C+Yapeng&rft.au=Kong%2C+Yu&rft.au=Zhong%2C+Bineng&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=7&rft.spage=2480&rft_id=info:doi/10.1109%2FTPAMI.2020.2968521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon