Distributed Arithmetic Coding for the Slepian-Wolf Problem

Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named ldquodistributed arithmetic coding,rdquo which extends arithmetic codes to the distributed case employing sequential decoding aided by the side informati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 57; číslo 6; s. 2245 - 2257
Hlavní autoři: Grangetto, M., Magli, E., Olmo, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named ldquodistributed arithmetic coding,rdquo which extends arithmetic codes to the distributed case employing sequential decoding aided by the side information. In particular, we introduce a distributed binary arithmetic coder for the Slepian-Wolf coding problem, along with a joint decoder. The proposed scheme can be applied to two sources in both the asymmetric mode, wherein one source acts as side information, and the symmetric mode, wherein both sources are coded with ambiguity, at any combination of achievable rates. Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the ability to incorporate arbitrary source models in the encoding process, e.g., context-based statistical models, in much the same way as a classical arithmetic coder. We have compared the performance of distributed arithmetic coding with turbo codes and low-density parity-check codes, and found that the proposed approach is very competitive.
AbstractList Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the ability to incorporate arbitrary source models in the encoding process, e.g., context-based statistical models, in much the same way as a classical arithmetic coder.
Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named "distributed arithmetic coding," which extends arithmetic codes to the distributed case employing sequential decoding aided by the side information. In particular, we introduce a distributed binary arithmetic coder for the Slepian-Wolf coding problem, along with a joint decoder. The proposed scheme can be applied to two sources in both the asymmetric mode, wherein one source acts as side information, and the symmetric mode, wherein both sources are coded with ambiguity, at any combination of achievable rates. Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the ability to incorporate arbitrary source models in the encoding process, e.g., context-based statistical models, in much the same way as a classical arithmetic coder. We have compared the performance of distributed arithmetic coding with turbo codes and low-density parity-check codes, and found that the proposed approach is very competitive.
Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named ldquodistributed arithmetic coding,rdquo which extends arithmetic codes to the distributed case employing sequential decoding aided by the side information. In particular, we introduce a distributed binary arithmetic coder for the Slepian-Wolf coding problem, along with a joint decoder. The proposed scheme can be applied to two sources in both the asymmetric mode, wherein one source acts as side information, and the symmetric mode, wherein both sources are coded with ambiguity, at any combination of achievable rates. Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the ability to incorporate arbitrary source models in the encoding process, e.g., context-based statistical models, in much the same way as a classical arithmetic coder. We have compared the performance of distributed arithmetic coding with turbo codes and low-density parity-check codes, and found that the proposed approach is very competitive.
Author Olmo, G.
Magli, E.
Grangetto, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Grangetto
  fullname: Grangetto, M.
  organization: Dipt. di Inf., Univ. degli Studi di Torino, Torino
– sequence: 2
  givenname: E.
  surname: Magli
  fullname: Magli, E.
  organization: Dip. di Elettron., Politec. di Torino, Torino
– sequence: 3
  givenname: G.
  surname: Olmo
  fullname: Olmo, G.
  organization: Dip. di Elettron., Politec. di Torino, Torino
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742437$$DView record in Pascal Francis
BookMark eNp9kEtLAzEURoNUUKt7wc0g6G4078y4k_oEwUIruguZTGJTZiY1SRf-eyOtLly4ufcuzvm4fAdgNPjBAHCM4AVCsL6cz6YXGMI6D0RxBXfAPqopKiEVfJRvyEjJKvG2Bw5iXMIM0Zrvg6sbF1NwzTqZtrgOLi16k5wuJr51w3thfSjSwhSzzqycGspX39liGnzTmf4Q7FrVRXO03WPwcnc7nzyUT8_3j5Prp1IThlJJNeaQsLq1dQMpN1gjoitRK4ZVfk4L0RKGOaWMEyosFYpA1EKBq6aqubVkDM43uavgP9YmJtm7qE3XqcH4dZSEVpzibI_B6R9w6ddhyL_JiiNEcEVYhs62kIpadTaoQbsoV8H1KnxKjATFlIjM8Q2ng48xGCu1Syo5P6SgXCcRlN-9y9y7_O5dbnvPIvwj_mT_o5xsFGeM-cWpEBBxRr4AmuCMYA
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LCOMM_2008_080645
crossref_primary_10_1109_LCOMM_2022_3219122
crossref_primary_10_1109_TIT_2021_3116082
crossref_primary_10_3390_e23080983
crossref_primary_10_1109_TCOMM_2011_051311_090765
crossref_primary_10_1186_1687_6180_2013_166
crossref_primary_10_1016_j_image_2022_116698
crossref_primary_10_1109_TIT_2024_3421253
crossref_primary_10_1109_TCOMM_2011_101011_110071
crossref_primary_10_1016_j_cnsns_2012_05_021
crossref_primary_10_1109_TIT_2022_3221289
crossref_primary_10_1109_TCOMM_2013_112613_120796
crossref_primary_10_1016_j_image_2019_03_016
crossref_primary_10_1109_JSEN_2013_2257944
crossref_primary_10_1109_TCOMM_2013_111313_130230
crossref_primary_10_1016_j_sigpro_2015_04_013
crossref_primary_10_1007_s11042_017_5130_y
crossref_primary_10_3390_e25030437
crossref_primary_10_1109_LSP_2009_2030099
crossref_primary_10_1109_TCOMM_2013_012913_120486
crossref_primary_10_1109_TIT_2020_3014965
crossref_primary_10_1109_TSP_2013_2295556
crossref_primary_10_3390_technologies11050132
crossref_primary_10_1109_TIP_2012_2190084
crossref_primary_10_1109_TCOMM_2016_2518680
crossref_primary_10_1109_TCOMM_2016_2599535
crossref_primary_10_1109_LCOMM_2021_3114591
Cites_doi 10.1109/ICIP.2004.1421413
10.1109/18.910579
10.1109/TIT.2003.810622
10.1109/MSP.2004.1328091
10.1109/TIT.1973.1055037
10.1109/49.947032
10.1109/LCOMM.2005.1375242
10.1109/ACSSC.2003.1292032
10.1016/j.sigpro.2006.03.016
10.1109/TIT.1976.1055508
10.1109/TSP.2005.851138
10.1016/j.sigpro.2006.03.018
10.1109/MMSP.2005.248682
10.1109/MSP.2007.904808
10.1016/j.sigpro.2006.03.012
10.1109/18.556597
10.1109/TIT.2006.871046
10.1016/j.sigpro.2006.03.010
10.1109/TCOMM.2005.849690
10.1109/DCC.2003.1194010
10.1109/ACSSC.2003.1292028
10.1109/WCNC.2005.1424816
10.7551/mitpress/4347.001.0001
10.1109/JPROC.2004.839619
10.1109/TIT.2002.806154
10.1109/TIT.2005.855584
10.1109/TMM.2003.822995
10.1155/2007/45493
10.1109/ICIP.2003.1247037
10.1109/TIT.2002.806145
10.1145/290159.290162
10.1109/TIP.2006.884925
10.1109/4234.957380
10.1109/TIT.2002.808103
10.1109/LCOMM.2002.804244
10.1109/LCOMM.2007.071172
10.1109/DCC.1998.672167
10.1109/ICIP.2007.4379079
10.1109/MMSP.2007.4412830
10.1007/978-1-4615-3998-8
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2009.2014280
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 2257
ExternalDocumentID 2315598341
21742437
10_1109_TSP_2009_2014280
4770165
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c351t-4c260359df9b046e2c13c879a52a047c77d35264456347f47a301d0728b896ff3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266333200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Sep 29 02:05:14 EDT 2025
Mon Jun 30 10:12:10 EDT 2025
Mon Jul 21 09:13:32 EDT 2025
Tue Nov 18 22:10:11 EST 2025
Sat Nov 29 04:10:13 EST 2025
Tue Aug 26 16:48:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Performance evaluation
Source coding
turbo codes, Wyner―Ziv coding
Distributed source signal
Turbo code
Channel coding
Sequential decoding
LDPC codes
Slepian―Wolf coding
distributed source coding
Statistical model
Arithmetic code
Signal processing
Parity check codes
Error correcting code
Wyner Ziv problem
Open market
Arithmetic coding
compression
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4c260359df9b046e2c13c879a52a047c77d35264456347f47a301d0728b896ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 861132835
PQPubID 85478
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TSP_2009_2014280
pascalfrancis_primary_21742437
ieee_primary_4770165
proquest_journals_861132835
proquest_miscellaneous_34864256
crossref_primary_10_1109_TSP_2009_2014280
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
yang (ref20) 2003
ref15
howard (ref37) 1992
ref36
ref14
ref31
ref30
ref11
ref32
ref10
tu (ref22) 2004
gallager (ref18) 1963
ref2
ref1
ref39
ref17
ref38
ref16
ref19
toto-zarasoa (ref33) 2008
ref24
ref23
ref26
ref25
ref42
ref41
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1109/ICIP.2004.1421413
– ident: ref42
  doi: 10.1109/18.910579
– ident: ref3
  doi: 10.1109/TIT.2003.810622
– ident: ref14
  doi: 10.1109/MSP.2004.1328091
– ident: ref1
  doi: 10.1109/TIT.1973.1055037
– ident: ref43
  doi: 10.1109/49.947032
– ident: ref29
  doi: 10.1109/LCOMM.2005.1375242
– ident: ref23
  doi: 10.1109/ACSSC.2003.1292032
– ident: ref13
  doi: 10.1016/j.sigpro.2006.03.016
– ident: ref2
  doi: 10.1109/TIT.1976.1055508
– ident: ref24
  doi: 10.1109/TSP.2005.851138
– ident: ref31
  doi: 10.1016/j.sigpro.2006.03.018
– ident: ref7
  doi: 10.1109/MMSP.2005.248682
– ident: ref8
  doi: 10.1109/MSP.2007.904808
– start-page: 46
  year: 2004
  ident: ref22
  article-title: compression of a binary source with side information using parallel concatenated convolutional codes
  publication-title: Proc IEEE Globecom
– year: 1992
  ident: ref37
  publication-title: Image and Text Compression
– ident: ref21
  doi: 10.1016/j.sigpro.2006.03.012
– ident: ref4
  doi: 10.1109/18.556597
– ident: ref28
  doi: 10.1109/TIT.2006.871046
– ident: ref30
  doi: 10.1016/j.sigpro.2006.03.010
– ident: ref40
  doi: 10.1109/TCOMM.2005.849690
– ident: ref17
  doi: 10.1109/DCC.2003.1194010
– start-page: 825
  year: 2003
  ident: ref20
  article-title: wynerziv coding based on tcq and ldpc codes
  publication-title: Proc Asilomar Conf Signals Systems Computers
  doi: 10.1109/ACSSC.2003.1292028
– ident: ref32
  doi: 10.1109/WCNC.2005.1424816
– year: 1963
  ident: ref18
  publication-title: Low Density Parity Check Codes
  doi: 10.7551/mitpress/4347.001.0001
– ident: ref6
  doi: 10.1109/JPROC.2004.839619
– ident: ref25
  doi: 10.1109/TIT.2002.806154
– ident: ref27
  doi: 10.1109/TIT.2005.855584
– ident: ref11
  doi: 10.1109/TMM.2003.822995
– ident: ref12
  doi: 10.1155/2007/45493
– ident: ref5
  doi: 10.1109/ICIP.2003.1247037
– ident: ref26
  doi: 10.1109/TIT.2002.806145
– ident: ref38
  doi: 10.1145/290159.290162
– ident: ref9
  doi: 10.1109/TIP.2006.884925
– start-page: 2965
  year: 2008
  ident: ref33
  article-title: rate-adaptive codes for the entire slepianwolf region and arbitrarily correlated sources
  publication-title: Proc IEEE ICASSP
– ident: ref16
  doi: 10.1109/4234.957380
– ident: ref15
  doi: 10.1109/TIT.2002.808103
– ident: ref19
  doi: 10.1109/LCOMM.2002.804244
– ident: ref34
  doi: 10.1109/LCOMM.2007.071172
– ident: ref41
  doi: 10.1109/DCC.1998.672167
– ident: ref36
  doi: 10.1109/ICIP.2007.4379079
– ident: ref35
  doi: 10.1109/MMSP.2007.4412830
– ident: ref39
  doi: 10.1007/978-1-4615-3998-8
SSID ssj0014496
Score 2.1310217
Snippet Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named...
Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the...
Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named "distributed...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2245
SubjectTerms Applied sciences
Arithmetic
Arithmetic coding
Codes
Coding, codes
compression
Context modeling
Decoding
distributed source coding
Encoding
Entropy
Exact sciences and technology
Image coding
Information, signal and communications theory
LDPC codes
Miscellaneous
Parity check codes
Signal and communications theory
Signal processing
Slepian-Wolf coding
Source coding
Telecommunications and information theory
Turbo codes
Video coding
Wyner-Ziv coding
Title Distributed Arithmetic Coding for the Slepian-Wolf Problem
URI https://ieeexplore.ieee.org/document/4770165
https://www.proquest.com/docview/861132835
https://www.proquest.com/docview/34864256
Volume 57
WOSCitedRecordID wos000266333200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90-KAPfk2xTmcffBGsa5e0SXyTqfggMnDq3kqbpjiY7diHf793bVcciuBbIWlT7pLc73K53wGc46aXxgljDupbObj7cSeOOPo8vvSirkkCU1yQfX0UT09yOFT9Nbisc2GMMcXlM3NFj0UsP8n1go7KOlwIyr5Zh3UhgjJXq44YcF7U4kK4gONKMVyGJF3VGTz3S2JKNHaItt0VE1TUVKEbkdEMhZKW1Sx-bMyFtbnf-d9_7sJ2hSrtm3Ia7MGayfZh6xvXYBOub4kil6pbmQQ7jubvH5S_aPdysl42YlcbsaD9PDYTnDHOWz5O7X5ZbeYAXu7vBr0Hpyqc4Gjme3OHa_RSmK-SVMXo_5qu9piWQkV-N3K50EIkRIvPETwxLlIuIlzmiSu6MpYqSFN2CI0sz8wR2JL41fBTRsWa-7GrUK-Cx8yLJUMoIizoLGUZ6opVnIpbjMPCu3BViNKnWpcqrKRvwUX9xqRk1Pijb5OkW_erBGtBe0VddTv5V8SwaEFrqb-wWpOzUAYeut6IOC04q1txMVGEJMpMvpiFjEv0x_zg-PdxW7BZBpPoEOYEGvPpwpzChv6cj2bTdjEfvwA5H9mm
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBrynWr_XBF8G6tkmXxDeZiuIcg03dW2nTFIW5itv8-71ru6Iogm-FpE25S3K_y-V-B3CMm14aJ4w5qG_l4O7HnTji6PME0ot8kzRNfkH2sS06HTkYqO4cnFa5MMaY_PKZOaPHPJafZHpKR2UNLgRl38zDYsC57xbZWlXMgPO8GhcCBhxZisEsKOmqRr_XLagp0dwh3na_GaG8qgrdiYzGKJa0qGfxY2vO7c31-v_-dAPWSlxpXxQTYRPmzGgLVr-wDdbg_JJIcqm-lUmw48vk-ZUyGO1WRvbLRvRqIxq0e0PzhnPGecqGqd0t6s1sw8P1Vb9145SlExzNAm_icI1-CgtUkqoYPWDja49pKVQU-JHLhRYiIWJ8jvCJcZFyEeFCT1zhy1iqZpqyHVgYZSOzC7YkhjX8lFGx5kHsKtSs4DHzYskQjAgLGjNZhrrkFafyFsMw9y9cFaL0qdqlCkvpW3BSvfFWcGr80bdG0q36lYK14Oibuqp28rCIY9GC_Zn-wnJVjkPZ9ND5RsxpQb1qxeVEMZJoZLLpOGRcokcWNPd-H7cOyzf9-3bYvu3c7cNKEVqiI5kDWJi8T80hLOmPycv4_Sifm5-0ttzt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Arithmetic+Coding+for+the+Slepian-Wolf+Problem&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Grangetto%2C+M.&rft.au=Magli%2C+E.&rft.au=Olmo%2C+G.&rft.date=2009-06-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=57&rft.issue=6&rft.spage=2245&rft.epage=2257&rft_id=info:doi/10.1109%2FTSP.2009.2014280&rft.externalDocID=4770165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon