Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering
Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised informa...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10851 - 10863 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS . |
|---|---|
| AbstractList | Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS . Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS.Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS. |
| Author | Zhu, Pengfei Wang, Yu Zhao, Shuai Hu, Qinghua Li, Jialu Xiao, Bin |
| Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0002-4310-9140 surname: Zhu fullname: Zhu, Pengfei email: zhupengfei@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 2 givenname: Jialu surname: Li fullname: Li, Jialu email: jialuli@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Yu orcidid: 0000-0002-4788-8655 surname: Wang fullname: Wang, Yu email: wangyu_@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 4 givenname: Bin orcidid: 0000-0001-8469-5302 surname: Xiao fullname: Xiao, Bin email: xiaobin@cqupt.edu.cn organization: Department of Computer Science and Technology, Chongqing University of Posts and Telecommunication, Chongqing, China – sequence: 5 givenname: Shuai surname: Zhao fullname: Zhao, Shuai email: zhaoshuai@catarc.ac.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 6 givenname: Qinghua orcidid: 0000-0001-7765-8095 surname: Hu fullname: Hu, Qinghua email: huqinghua@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35584075$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1PGzEQhi0EAgr8gVaqVuqllw3rr137iFI-KkUgESr1ZtnOuDXarFPbi8S_xyQhhxzqy1ie5x3PzPsJHQ5hAIQ-42aCcSMvn-7vZ_MJaQiZUNxhLugBOiW4JTWhQhzu7t3vE3SR0nNTTtvwlsljdEI5F6zp-Cl6nIa-1yZEnf0LVD_A-uTDUD-CH1yIFhbVHHpXz8cVxJd1rirv1VXO0Zsxl_xt1Ku_1bQfU4bohz_n6MjpPsHFNp6hXzfXT9O7evZw-3N6Nast5TjXTGuBOV8QCUyDdI0jVFvHqMDYEdJhi0Eb4wCM5SAlsYaB7cpUjBppHD1D3zd1VzH8GyFltfTJQhlngDAmRdq25UxIKgv6bQ99DmMcSneKCMmFIC1lhfq6pUazhIVaRb_U8VV9bKsAZAPYGFKK4HYIbtS7K2rtinp3RW1dKSKxJ7I-l22HIUft-_9Lv2ykHgB2f8mu6wQj9A0a4ZqI |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126676 crossref_primary_10_3390_math12101574 crossref_primary_10_3233_IDA_230647 crossref_primary_10_1016_j_neucom_2024_128539 crossref_primary_10_1109_TNNLS_2024_3416167 crossref_primary_10_1109_ACCESS_2025_3544260 crossref_primary_10_1109_TNNLS_2024_3473618 crossref_primary_10_1109_TMM_2022_3213208 crossref_primary_10_1109_JIOT_2023_3342979 crossref_primary_10_1093_comjnl_bxaf080 crossref_primary_10_1016_j_neunet_2025_107206 crossref_primary_10_1007_s10489_025_06295_7 crossref_primary_10_1007_s41019_024_00249_8 |
| Cites_doi | 10.24963/ijcai.2018/362 10.1109/TCYB.2019.2932096 10.1109/TNNLS.2020.3008702 10.1109/ICDM.2018.00174 10.1145/3308558.3313488 10.1109/TNNLS.2020.2978386 10.24963/ijcai.2017/273 10.1016/j.ins.2020.01.043 10.24963/ijcai.2019/601 10.1609/aaai.v34i04.5843 10.1609/aaai.v30i1.10179 10.1109/TNNLS.2019.2935173 10.1109/TNNLS.2019.2955209 10.24963/ijcai.2019/494 10.1016/j.neunet.2021.10.006 10.1609/aimag.v29i3.2157 10.1109/TKDE.2019.2904068 10.1609/aaai.v34i04.6048 10.1109/ICDM.2017.61 10.1609/aaai.v28i1.8950 10.1145/3394486.3403140 10.1109/CVPRW.2018.00107 10.1109/TNNLS.2018.2812888 10.1145/1014052.1014135 10.1007/978-3-030-01264-9_9 10.1109/TITS.2019.2950416 10.24963/ijcai.2019/509 10.1186/s12859-021-04022-w 10.1109/TMM.2021.3094296 10.1109/ICDM50108.2020.00177 10.24963/ijcai.2020/411 10.1145/3366423.3380112 10.1214/aos/1015362183 10.1145/3366423.3380214 10.1109/TKDE.2018.2807452 10.1109/TIP.2021.3070200 10.1609/aaai.v34i04.5966 10.1145/2623330.2623732 10.1609/aaai.v32i1.11604 10.1109/TIP.2021.3079800 10.1109/CVPR.2019.00562 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3171583 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 10863 |
| ExternalDocumentID | 35584075 10_1109_TNNLS_2022_3171583 9777842 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFB2101904 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62106174; 61732011; 61876127; 61925602 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2021TQ0242; 2021M690118 funderid: 10.13039/501100002858 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-4aa8155d29e4ae9f0f23acf43811f2271c1eabbfeebc5e992cb4ec716243b9bf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799576000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 16:00:50 EDT 2025 Sun Nov 09 08:20:31 EST 2025 Thu Jan 02 22:56:24 EST 2025 Sat Nov 29 01:40:20 EST 2025 Tue Nov 18 21:39:56 EST 2025 Wed Aug 27 02:07:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-4aa8155d29e4ae9f0f23acf43811f2271c1eabbfeebc5e992cb4ec716243b9bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4310-9140 0000-0001-8469-5302 0000-0001-7765-8095 0000-0002-4788-8655 |
| PMID | 35584075 |
| PQID | 2895882634 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2666548939 crossref_primary_10_1109_TNNLS_2022_3171583 proquest_journals_2895882634 pubmed_primary_35584075 ieee_primary_9777842 crossref_citationtrail_10_1109_TNNLS_2022_3171583 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref53 ref52 ref11 ref10 ref54 Vaibhav (ref32) 2019 Lee (ref48); 3 ref17 ref16 ref19 ref18 Velickovic (ref21) You (ref23); 119 ref50 ref46 ref45 ref47 van der Maaten (ref56) 2014; 15 ref41 ref43 ref49 Kipf (ref14) 2016 ref8 ref7 ref9 ref3 ref6 ref5 ref40 Wu (ref55) Dilokthanakul (ref20) 2016 Gupta (ref42) ref34 ref37 ref36 ref31 ref33 ref2 Mikolov (ref35) ref1 ref39 Kipf (ref30) Fout (ref4) ref24 ref26 ref25 ref22 ref28 ref27 ref29 Hamilton (ref38) 2017; 40 Xie (ref44); 48 Pei (ref51) |
| References_xml | – start-page: 1 volume-title: Proc. ICLR ident: ref35 article-title: Efficient estimation of word representations in vector space – start-page: 1 volume-title: Proc. ICLR ident: ref42 article-title: Unsupervised clustering using pseudo-semi-supervised learning – volume: 48 start-page: 478 volume-title: Proc. ICML ident: ref44 article-title: Unsupervised deep embedding for clustering analysis – ident: ref15 doi: 10.24963/ijcai.2018/362 – volume: 40 start-page: 52 issue: 3 year: 2017 ident: ref38 article-title: Representation learning on graphs: Methods and applications publication-title: IEEE Data Eng. Bull. – ident: ref31 doi: 10.1109/TCYB.2019.2932096 – ident: ref6 doi: 10.1109/TNNLS.2020.3008702 – ident: ref45 doi: 10.1109/ICDM.2018.00174 – ident: ref2 doi: 10.1145/3308558.3313488 – volume: 119 start-page: 10871 volume-title: Proc. ICML ident: ref23 article-title: When does self-supervision help graph convolutional networks? – ident: ref39 doi: 10.1109/TNNLS.2020.2978386 – start-page: 1 volume-title: Proc. ICLR ident: ref30 article-title: Semi-supervised classification with graph convolutional networks – ident: ref19 doi: 10.24963/ijcai.2017/273 – ident: ref8 doi: 10.1016/j.ins.2020.01.043 – ident: ref16 doi: 10.24963/ijcai.2019/601 – ident: ref33 doi: 10.1609/aaai.v34i04.5843 – ident: ref37 doi: 10.1609/aaai.v30i1.10179 – ident: ref9 doi: 10.1109/TNNLS.2019.2935173 – ident: ref10 doi: 10.1109/TNNLS.2019.2955209 – ident: ref47 doi: 10.24963/ijcai.2019/494 – ident: ref29 doi: 10.1016/j.neunet.2021.10.006 – ident: ref52 doi: 10.1609/aimag.v29i3.2157 – ident: ref3 doi: 10.1109/TKDE.2019.2904068 – ident: ref25 doi: 10.1609/aaai.v34i04.6048 – volume-title: arXiv:1908.04003 year: 2019 ident: ref32 article-title: RWR-GAE: Random walk regularization for graph auto encoders – ident: ref49 doi: 10.1109/ICDM.2017.61 – ident: ref53 doi: 10.1609/aaai.v28i1.8950 – volume-title: arXiv:1611.02648 year: 2016 ident: ref20 article-title: Deep unsupervised clustering with Gaussian mixture variational autoencoders – ident: ref54 doi: 10.1145/3394486.3403140 – start-page: 6530 volume-title: Proc. NeurIPS ident: ref4 article-title: Protein interface prediction using graph convolutional networks – ident: ref41 doi: 10.1109/CVPRW.2018.00107 – volume-title: arXiv:1611.07308 year: 2016 ident: ref14 article-title: Variational graph auto-encoders – start-page: 3086 volume-title: Proc. NeurIPS ident: ref55 article-title: Learning with partially absorbing random walks – ident: ref1 doi: 10.1109/TNNLS.2018.2812888 – start-page: 1 volume-title: Proc. ICLR ident: ref21 article-title: Deep graph infomax – ident: ref34 doi: 10.1145/1014052.1014135 – ident: ref40 doi: 10.1007/978-3-030-01264-9_9 – ident: ref7 doi: 10.1109/TITS.2019.2950416 – ident: ref13 doi: 10.24963/ijcai.2019/509 – ident: ref5 doi: 10.1186/s12859-021-04022-w – ident: ref28 doi: 10.1109/TMM.2021.3094296 – start-page: 1 volume-title: Proc. ICLR ident: ref51 article-title: Geom-GCN: Geometric graph convolutional networks – ident: ref18 doi: 10.1109/ICDM50108.2020.00177 – ident: ref46 doi: 10.24963/ijcai.2020/411 – ident: ref22 doi: 10.1145/3366423.3380112 – ident: ref50 doi: 10.1214/aos/1015362183 – volume: 3 start-page: 2 volume-title: Proc. ICMLW ident: ref48 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref17 doi: 10.1145/3366423.3380214 – ident: ref12 doi: 10.1109/TKDE.2018.2807452 – ident: ref11 doi: 10.1109/TIP.2021.3070200 – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: ref56 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J. Mach. Learn. Res. – ident: ref43 doi: 10.1609/aaai.v34i04.5966 – ident: ref36 doi: 10.1145/2623330.2623732 – ident: ref24 doi: 10.1609/aaai.v32i1.11604 – ident: ref27 doi: 10.1109/TIP.2021.3079800 – ident: ref26 doi: 10.1109/CVPR.2019.00562 |
| SSID | ssj0000605649 |
| Score | 2.5355604 |
| Snippet | Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE)... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10851 |
| SubjectTerms | Attributed graph clustering (AGC) Automatic generation control Classification Clustering Collaboration collaborative training Convolutional neural networks Decisions Graphical representations Labels Learning Machine learning Nodes Representation learning self-supervised learning Sorting Supervision Task analysis Training variational graph autoencoder (VGAE) |
| Title | Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering |
| URI | https://ieeexplore.ieee.org/document/9777842 https://www.ncbi.nlm.nih.gov/pubmed/35584075 https://www.proquest.com/docview/2895882634 https://www.proquest.com/docview/2666548939 |
| Volume | 34 |
| WOSCitedRecordID | wos000799576000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXWiiP0FIFiRuYxo9s4mO1UDhUK9QtaG-R7YwlpNVu1W76-5lxHggJkLhZtvOQZ2x_48f3AbytlfchFk4oXzlhWq2FR21FsLW3EqXqly6-X1aLRb1a2a978H66C4OI6fAZfuBk2stvt6HjpbIzwipVbWjAfUCJ_q7WtJ5SEC6fJbSr5EwJpavVeEemsGfXi8XlkqJBpShIrWRZs34OM4tTPFP-NiUljZW_w8007Vwc_N8PH8LjAV7m570_PIE93DyFg1G6IR968hFczX_Z_x7zj4PSjrjCxKQasM2XuI5i2d3wYMJlOeXn57teIYvKPzPVdT5fd0y1QBPgM_h28el6_kUM8goi6FLuhHGuJjTRKovGoY1FVNqFyJxfMipVySDReR8RfSjRWhW8wcCMU0Z766N-Dvub7QZfQh5dVQXflqa10iivrHE1YRnHcIryfQZybOEmDNzjLIGxblIMUtgmGahhAzWDgTJ4Nz1z0zNv_LP2ETf_VHNo-QxORkM2Q-e8ayjGLCmwmGmTwZupmLoV75W4DW47qjNjWWYCczaDF70DTO8e_ebVn795DI9Yk74_83IC-7vbDl_Dw3C_-3F3e0q-u6pPk-_-BISo6Ys |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkulFJoA6UEiRuYxo9s4mO1UIpYItRd0N4i2xlLlVa7Vbvp72fsPBASIHGLbCexPGP7Gz--D-BNKax1PjNM2MIw1UjJLErNnC6t5shFt3TxY1ZUVblc6m878G68C4OI8fAZvg-PcS-_2bg2LJWdElYpSkUD7r1cKcG721rjikpGyHwS8a7gE8GELJbDLZlMny6qajaneFAIClMLnpdBQSdwi1NEk_82KUWVlb8DzjjxnO_9X5Ufw6MeYKZnnUfsww6un8DeIN6Q9n35AC6nvzzgDtMPvdYOu8TIpeqwSee48mzeXofhJOSllJ6ebTuNLMr_FMiu0-mqDWQLNAU-he_nHxfTC9YLLDAnc75lypiS8EQjNCqD2mdeSON8YP3iXoiCO47GWo9oXY5aC2cVusA5paTV1stnsLverPEIUm-KwtkmV43mSlihlSkJzZgAqCjdJsCHFq5dzz4eRDBWdYxCMl1HA9XBQHVvoATeju9cd9wb_yx9EJp_LNm3fALHgyHrvnve1hRl5hRaTKRK4PWYTR0r7JaYNW5aKjMJwswE53QCh50DjN8e_Ob5n__5Ch5cLL7O6tnn6ssLeBgU6rsTMMewu71p8SXcd3fbq9ubk-jBPwFOHuvq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Decision-Reinforced+Self-Supervision+for+Attributed+Graph+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Pengfei&rft.au=Li%2C+Jialu&rft.au=Wang%2C+Yu&rft.au=Xiao%2C+Bin&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=12&rft.spage=10851&rft.epage=10863&rft_id=info:doi/10.1109%2FTNNLS.2022.3171583&rft_id=info%3Apmid%2F35584075&rft.externalDocID=9777842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |