Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering

Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 34; H. 12; S. 10851 - 10863
Hauptverfasser: Zhu, Pengfei, Li, Jialu, Wang, Yu, Xiao, Bin, Zhao, Shuai, Hu, Qinghua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS .
AbstractList Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS .
Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS.Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS.
Author Zhu, Pengfei
Wang, Yu
Zhao, Shuai
Hu, Qinghua
Li, Jialu
Xiao, Bin
Author_xml – sequence: 1
  givenname: Pengfei
  orcidid: 0000-0002-4310-9140
  surname: Zhu
  fullname: Zhu, Pengfei
  email: zhupengfei@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Jialu
  surname: Li
  fullname: Li, Jialu
  email: jialuli@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-4788-8655
  surname: Wang
  fullname: Wang, Yu
  email: wangyu_@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0001-8469-5302
  surname: Xiao
  fullname: Xiao, Bin
  email: xiaobin@cqupt.edu.cn
  organization: Department of Computer Science and Technology, Chongqing University of Posts and Telecommunication, Chongqing, China
– sequence: 5
  givenname: Shuai
  surname: Zhao
  fullname: Zhao, Shuai
  email: zhaoshuai@catarc.ac.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 6
  givenname: Qinghua
  orcidid: 0000-0001-7765-8095
  surname: Hu
  fullname: Hu, Qinghua
  email: huqinghua@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35584075$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhi0EAgr8gVaqVuqllw3rr137iFI-KkUgESr1ZtnOuDXarFPbi8S_xyQhhxzqy1ie5x3PzPsJHQ5hAIQ-42aCcSMvn-7vZ_MJaQiZUNxhLugBOiW4JTWhQhzu7t3vE3SR0nNTTtvwlsljdEI5F6zp-Cl6nIa-1yZEnf0LVD_A-uTDUD-CH1yIFhbVHHpXz8cVxJd1rirv1VXO0Zsxl_xt1Ku_1bQfU4bohz_n6MjpPsHFNp6hXzfXT9O7evZw-3N6Nast5TjXTGuBOV8QCUyDdI0jVFvHqMDYEdJhi0Eb4wCM5SAlsYaB7cpUjBppHD1D3zd1VzH8GyFltfTJQhlngDAmRdq25UxIKgv6bQ99DmMcSneKCMmFIC1lhfq6pUazhIVaRb_U8VV9bKsAZAPYGFKK4HYIbtS7K2rtinp3RW1dKSKxJ7I-l22HIUft-_9Lv2ykHgB2f8mu6wQj9A0a4ZqI
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126676
crossref_primary_10_3390_math12101574
crossref_primary_10_3233_IDA_230647
crossref_primary_10_1016_j_neucom_2024_128539
crossref_primary_10_1109_TNNLS_2024_3416167
crossref_primary_10_1109_ACCESS_2025_3544260
crossref_primary_10_1109_TNNLS_2024_3473618
crossref_primary_10_1109_TMM_2022_3213208
crossref_primary_10_1109_JIOT_2023_3342979
crossref_primary_10_1093_comjnl_bxaf080
crossref_primary_10_1016_j_neunet_2025_107206
crossref_primary_10_1007_s10489_025_06295_7
crossref_primary_10_1007_s41019_024_00249_8
Cites_doi 10.24963/ijcai.2018/362
10.1109/TCYB.2019.2932096
10.1109/TNNLS.2020.3008702
10.1109/ICDM.2018.00174
10.1145/3308558.3313488
10.1109/TNNLS.2020.2978386
10.24963/ijcai.2017/273
10.1016/j.ins.2020.01.043
10.24963/ijcai.2019/601
10.1609/aaai.v34i04.5843
10.1609/aaai.v30i1.10179
10.1109/TNNLS.2019.2935173
10.1109/TNNLS.2019.2955209
10.24963/ijcai.2019/494
10.1016/j.neunet.2021.10.006
10.1609/aimag.v29i3.2157
10.1109/TKDE.2019.2904068
10.1609/aaai.v34i04.6048
10.1109/ICDM.2017.61
10.1609/aaai.v28i1.8950
10.1145/3394486.3403140
10.1109/CVPRW.2018.00107
10.1109/TNNLS.2018.2812888
10.1145/1014052.1014135
10.1007/978-3-030-01264-9_9
10.1109/TITS.2019.2950416
10.24963/ijcai.2019/509
10.1186/s12859-021-04022-w
10.1109/TMM.2021.3094296
10.1109/ICDM50108.2020.00177
10.24963/ijcai.2020/411
10.1145/3366423.3380112
10.1214/aos/1015362183
10.1145/3366423.3380214
10.1109/TKDE.2018.2807452
10.1109/TIP.2021.3070200
10.1609/aaai.v34i04.5966
10.1145/2623330.2623732
10.1609/aaai.v32i1.11604
10.1109/TIP.2021.3079800
10.1109/CVPR.2019.00562
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3171583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10863
ExternalDocumentID 35584075
10_1109_TNNLS_2022_3171583
9777842
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFB2101904
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62106174; 61732011; 61876127; 61925602
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2021TQ0242; 2021M690118
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-4aa8155d29e4ae9f0f23acf43811f2271c1eabbfeebc5e992cb4ec716243b9bf3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799576000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 16:00:50 EDT 2025
Sun Nov 09 08:20:31 EST 2025
Thu Jan 02 22:56:24 EST 2025
Sat Nov 29 01:40:20 EST 2025
Tue Nov 18 21:39:56 EST 2025
Wed Aug 27 02:07:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4aa8155d29e4ae9f0f23acf43811f2271c1eabbfeebc5e992cb4ec716243b9bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4310-9140
0000-0001-8469-5302
0000-0001-7765-8095
0000-0002-4788-8655
PMID 35584075
PQID 2895882634
PQPubID 85436
PageCount 13
ParticipantIDs proquest_miscellaneous_2666548939
crossref_primary_10_1109_TNNLS_2022_3171583
proquest_journals_2895882634
pubmed_primary_35584075
ieee_primary_9777842
crossref_citationtrail_10_1109_TNNLS_2022_3171583
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
ref11
ref10
ref54
Vaibhav (ref32) 2019
Lee (ref48); 3
ref17
ref16
ref19
ref18
Velickovic (ref21)
You (ref23); 119
ref50
ref46
ref45
ref47
van der Maaten (ref56) 2014; 15
ref41
ref43
ref49
Kipf (ref14) 2016
ref8
ref7
ref9
ref3
ref6
ref5
ref40
Wu (ref55)
Dilokthanakul (ref20) 2016
Gupta (ref42)
ref34
ref37
ref36
ref31
ref33
ref2
Mikolov (ref35)
ref1
ref39
Kipf (ref30)
Fout (ref4)
ref24
ref26
ref25
ref22
ref28
ref27
ref29
Hamilton (ref38) 2017; 40
Xie (ref44); 48
Pei (ref51)
References_xml – start-page: 1
  volume-title: Proc. ICLR
  ident: ref35
  article-title: Efficient estimation of word representations in vector space
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref42
  article-title: Unsupervised clustering using pseudo-semi-supervised learning
– volume: 48
  start-page: 478
  volume-title: Proc. ICML
  ident: ref44
  article-title: Unsupervised deep embedding for clustering analysis
– ident: ref15
  doi: 10.24963/ijcai.2018/362
– volume: 40
  start-page: 52
  issue: 3
  year: 2017
  ident: ref38
  article-title: Representation learning on graphs: Methods and applications
  publication-title: IEEE Data Eng. Bull.
– ident: ref31
  doi: 10.1109/TCYB.2019.2932096
– ident: ref6
  doi: 10.1109/TNNLS.2020.3008702
– ident: ref45
  doi: 10.1109/ICDM.2018.00174
– ident: ref2
  doi: 10.1145/3308558.3313488
– volume: 119
  start-page: 10871
  volume-title: Proc. ICML
  ident: ref23
  article-title: When does self-supervision help graph convolutional networks?
– ident: ref39
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref30
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref19
  doi: 10.24963/ijcai.2017/273
– ident: ref8
  doi: 10.1016/j.ins.2020.01.043
– ident: ref16
  doi: 10.24963/ijcai.2019/601
– ident: ref33
  doi: 10.1609/aaai.v34i04.5843
– ident: ref37
  doi: 10.1609/aaai.v30i1.10179
– ident: ref9
  doi: 10.1109/TNNLS.2019.2935173
– ident: ref10
  doi: 10.1109/TNNLS.2019.2955209
– ident: ref47
  doi: 10.24963/ijcai.2019/494
– ident: ref29
  doi: 10.1016/j.neunet.2021.10.006
– ident: ref52
  doi: 10.1609/aimag.v29i3.2157
– ident: ref3
  doi: 10.1109/TKDE.2019.2904068
– ident: ref25
  doi: 10.1609/aaai.v34i04.6048
– volume-title: arXiv:1908.04003
  year: 2019
  ident: ref32
  article-title: RWR-GAE: Random walk regularization for graph auto encoders
– ident: ref49
  doi: 10.1109/ICDM.2017.61
– ident: ref53
  doi: 10.1609/aaai.v28i1.8950
– volume-title: arXiv:1611.02648
  year: 2016
  ident: ref20
  article-title: Deep unsupervised clustering with Gaussian mixture variational autoencoders
– ident: ref54
  doi: 10.1145/3394486.3403140
– start-page: 6530
  volume-title: Proc. NeurIPS
  ident: ref4
  article-title: Protein interface prediction using graph convolutional networks
– ident: ref41
  doi: 10.1109/CVPRW.2018.00107
– volume-title: arXiv:1611.07308
  year: 2016
  ident: ref14
  article-title: Variational graph auto-encoders
– start-page: 3086
  volume-title: Proc. NeurIPS
  ident: ref55
  article-title: Learning with partially absorbing random walks
– ident: ref1
  doi: 10.1109/TNNLS.2018.2812888
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref21
  article-title: Deep graph infomax
– ident: ref34
  doi: 10.1145/1014052.1014135
– ident: ref40
  doi: 10.1007/978-3-030-01264-9_9
– ident: ref7
  doi: 10.1109/TITS.2019.2950416
– ident: ref13
  doi: 10.24963/ijcai.2019/509
– ident: ref5
  doi: 10.1186/s12859-021-04022-w
– ident: ref28
  doi: 10.1109/TMM.2021.3094296
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref51
  article-title: Geom-GCN: Geometric graph convolutional networks
– ident: ref18
  doi: 10.1109/ICDM50108.2020.00177
– ident: ref46
  doi: 10.24963/ijcai.2020/411
– ident: ref22
  doi: 10.1145/3366423.3380112
– ident: ref50
  doi: 10.1214/aos/1015362183
– volume: 3
  start-page: 2
  volume-title: Proc. ICMLW
  ident: ref48
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref17
  doi: 10.1145/3366423.3380214
– ident: ref12
  doi: 10.1109/TKDE.2018.2807452
– ident: ref11
  doi: 10.1109/TIP.2021.3070200
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: ref56
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref43
  doi: 10.1609/aaai.v34i04.5966
– ident: ref36
  doi: 10.1145/2623330.2623732
– ident: ref24
  doi: 10.1609/aaai.v32i1.11604
– ident: ref27
  doi: 10.1109/TIP.2021.3079800
– ident: ref26
  doi: 10.1109/CVPR.2019.00562
SSID ssj0000605649
Score 2.5355604
Snippet Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10851
SubjectTerms Attributed graph clustering (AGC)
Automatic generation control
Classification
Clustering
Collaboration
collaborative training
Convolutional neural networks
Decisions
Graphical representations
Labels
Learning
Machine learning
Nodes
Representation learning
self-supervised learning
Sorting
Supervision
Task analysis
Training
variational graph autoencoder (VGAE)
Title Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering
URI https://ieeexplore.ieee.org/document/9777842
https://www.ncbi.nlm.nih.gov/pubmed/35584075
https://www.proquest.com/docview/2895882634
https://www.proquest.com/docview/2666548939
Volume 34
WOSCitedRecordID wos000799576000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6iiEMvZZm2hE1B6o0G4iWLj2jYDmhUzUA1tyi2XySk0QyChN_Ps7MgJKjUWxQ7i_zes7_n5fsAfhnJsyzhmkKcUhSprI1yZtKoEjE3NrY69jzdf2-zySSfz9WfNfg9nIVBRL_5DE_dpV_LtyvTuKmyM8IqWS6pw_1CF-1ZrWE-JSZcnnq0y1nKIy6yeX9GJlZnd5PJ7YyyQc4pSc1Ykjv9HMcsTvlM8m5I8horn8NNP-xcbf7fD2_Btw5ehuetP2zDGi53YLOXbgi7SB7BdPxm_xcMLzqlnWiKnknVoA1nuKiiWfPoOhNXFtL98LxuFbKo_NpRXYfjReOoFmgA_A73V5d345uok1eIjEhYHcmyzAlNWK5QlqiquOKiNJXj_GIV5xkzDEutK0RtElSKGy3ROMYpKbTSlfgB68vVEnchJNSJMillKpiVNpGlTTG3XGqbodEiDoD1LVyYjnvcSWAsCp-DxKrwBiqcgYrOQAGcDM88tswb_6w9cs0_1OxaPoCD3pBFF5zPBeWYCSUWqZABHA_FFFZuraRc4qqhOqmTZSYwpwL42TrA8O7eb_Y-_uY-fHWa9O2elwNYr58aPIQN81I_PD8dke_O8yPvu6-OQ-ju
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBYleaKG0BAqkEjcIjV9JfKwWShHbCHWXam9RbE8kpNVu1W76-xk7D4TUInGLYuchz4z9jR_fB_DeSp7nihsKcUpRpHYuKZjNkkak3LrUmTTwdF9N87IsFgv9Yws-jmdhEDFsPsNP_jKs5bu1bf1U2QlhlbyQ1OE-UlJy1p3WGmdUUkLmWcC7nGU84SJfDKdkUn0yL8vpjPJBzilNzZkqvIKO5xanjEb9NSgFlZWHAWcYeM52_--X9-BpDzDj084jnsEWrp7D7iDeEPexvA-Xkz8ecIfx515rJ7nEwKVq0cUzXDbJrL323Ykvi-l-fLrpNLKo_Ksnu44ny9aTLdAQ-AJ-nn2ZT86TXmAhsUKxTSLruiA84bhGWaNu0oaL2jae9Ys1nOfMMqyNaRCNVag1t0ai9ZxTUhhtGnEA26v1Cl9CTLgTpaplJpiTTsnaZVg4Lo3L0RqRRsCGFq5szz7uRTCWVchCUl0FA1XeQFVvoAg-jM9cd9wb_6y975t_rNm3fARHgyGrPjxvK8oyFaUWmZARHI_FFFh-taRe4bqlOpkXZiY4pyM47BxgfPfgN6_u_-Y7eHI-v5hW02_l99ew4xXqux0wR7C9uWnxDTy2d5tftzdvgwf_BlLV600
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Decision-Reinforced+Self-Supervision+for+Attributed+Graph+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Pengfei&rft.au=Li%2C+Jialu&rft.au=Wang%2C+Yu&rft.au=Xiao%2C+Bin&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=12&rft.spage=10851&rft_id=info:doi/10.1109%2FTNNLS.2022.3171583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon