An improved weighted recursive PCA algorithm for adaptive fault detection

A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real proces...

Full description

Saved in:
Bibliographic Details
Published in:Control engineering practice Vol. 50; pp. 69 - 83
Main Authors: Portnoy, Ivan, Melendez, Kevin, Pinzon, Horacio, Sanjuan, Marco
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2016
Subjects:
ISSN:0967-0661, 1873-6939
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP). The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well. A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update. [Display omitted] •A novel weighted recursive PCA-based fault detection technique is developed.•The false alarm rate in process monitoring due to time-drifting changes is reduced.•Performance of two existing algorithms is compared to the proposed technique.•The computational complexity (FLOPs required for update) is significantly reduced.
AbstractList A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP). The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well. A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update. [Display omitted] •A novel weighted recursive PCA-based fault detection technique is developed.•The false alarm rate in process monitoring due to time-drifting changes is reduced.•Performance of two existing algorithms is compared to the proposed technique.•The computational complexity (FLOPs required for update) is significantly reduced.
A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP). The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well. A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update.
Author Sanjuan, Marco
Portnoy, Ivan
Pinzon, Horacio
Melendez, Kevin
Author_xml – sequence: 1
  givenname: Ivan
  surname: Portnoy
  fullname: Portnoy, Ivan
  email: iportnoy@uninote.edu.co
– sequence: 2
  givenname: Kevin
  surname: Melendez
  fullname: Melendez, Kevin
  email: vkevin@uninorte.edu.co, kmelendez09@hotmail.com
– sequence: 3
  givenname: Horacio
  surname: Pinzon
  fullname: Pinzon, Horacio
  email: horacio.pinzon@gmail.com, hcoronado@uninorte.edu.co
– sequence: 4
  givenname: Marco
  surname: Sanjuan
  fullname: Sanjuan, Marco
  email: msanjuan@uninorte.edu.co
BookMark eNqNkF9LwzAUxYNMcJt-hz760pqkbZq-CHP4ZzDQB30OWXqzZbTNTNKJ396UCYIv-nQv955zOPxmaNLbHhBKCM4IJuxmn6l46LcHJ1VG4yXDNMMEn6Ep4VWesjqvJ2iKa1almDFygWbe73EU1jWZotWiT0x3cPYITfIBZrsLcXGgBufNEZKX5SKR7dY6E3Zdoq1LZCMPYXxpObQhaSCACsb2l-hcy9bD1feco7eH-9flU7p-flwtF-tU5SUJacHLktSKFptSM0orylWNVV1gHhs1JWZcgq5yrXPJeLRgSnhDNwRKJgkuVT5H16fcWPp9AB9EZ7yCtpU92MELEoMw4bQoovT2JFXOeu9AC2WCHMsGJ00rCBYjQ7EXPwzFyFBgKiLDGMB_BRyc6aT7_I_17mSFyOJowAmvDPQKGhPpBtFY83fIF5M2k_c
CitedBy_id crossref_primary_10_1016_j_neucom_2018_05_018
crossref_primary_10_1016_j_ifacol_2022_07_199
crossref_primary_10_1016_j_cherd_2018_12_028
crossref_primary_10_1016_j_psep_2024_12_066
crossref_primary_10_1016_j_anucene_2022_109323
crossref_primary_10_1016_j_bspc_2022_104551
crossref_primary_10_1016_j_conengprac_2016_10_015
crossref_primary_10_1016_j_conengprac_2016_10_014
crossref_primary_10_1109_ACCESS_2019_2939576
crossref_primary_10_1155_2021_9954172
crossref_primary_10_1109_TCYB_2022_3176475
crossref_primary_10_1016_j_ces_2024_120059
crossref_primary_10_1016_j_conengprac_2021_105038
crossref_primary_10_1016_j_cma_2020_113334
crossref_primary_10_1002_cem_70020
crossref_primary_10_1016_j_conengprac_2019_03_015
crossref_primary_10_1016_j_procs_2023_09_074
crossref_primary_10_3390_s21134394
crossref_primary_10_3390_app13063409
crossref_primary_10_1002_cjce_25478
crossref_primary_10_1109_ACCESS_2018_2873806
crossref_primary_10_1016_j_arcontrol_2016_09_008
crossref_primary_10_1016_j_cie_2021_107893
crossref_primary_10_1016_j_conengprac_2017_06_003
crossref_primary_10_1016_j_anucene_2021_108621
crossref_primary_10_1177_0020294019858103
crossref_primary_10_1080_09720529_2017_1310979
crossref_primary_10_1016_j_jprocont_2019_09_004
crossref_primary_10_1016_j_jprocont_2022_11_010
crossref_primary_10_1109_TCST_2018_2865413
crossref_primary_10_1016_j_optlaseng_2020_106039
crossref_primary_10_1002_cem_3142
crossref_primary_10_1002_cjce_25129
crossref_primary_10_2514_1_J060349
crossref_primary_10_1007_s12555_024_0081_3
crossref_primary_10_1016_j_conengprac_2016_09_014
crossref_primary_10_1002_cjce_24494
crossref_primary_10_1016_j_procs_2024_11_184
crossref_primary_10_1016_j_conengprac_2019_07_017
crossref_primary_10_1016_j_conengprac_2017_05_005
crossref_primary_10_1016_j_engappai_2023_106145
crossref_primary_10_1016_j_conengprac_2017_06_011
crossref_primary_10_3390_pr12061218
crossref_primary_10_21303_2461_4262_2022_002701
crossref_primary_10_1016_j_conengprac_2023_105804
crossref_primary_10_1109_TIE_2023_3299013
crossref_primary_10_1016_j_conengprac_2019_04_008
crossref_primary_10_1109_ACCESS_2019_2920699
crossref_primary_10_1016_j_jsv_2021_116344
crossref_primary_10_1016_j_conengprac_2018_10_003
crossref_primary_10_1016_j_jfranklin_2022_04_022
crossref_primary_10_1002_cjce_24066
crossref_primary_10_1016_j_psep_2023_04_036
crossref_primary_10_3390_electronics10243161
crossref_primary_10_1016_j_compind_2020_103279
crossref_primary_10_1051_mfreview_2020027
crossref_primary_10_1109_TIM_2022_3186081
crossref_primary_10_1109_ACCESS_2024_3517321
crossref_primary_10_1016_j_conengprac_2017_03_001
crossref_primary_10_1109_ACCESS_2020_3022771
crossref_primary_10_1016_j_ijcip_2018_10_008
crossref_primary_10_1016_j_apenergy_2024_124615
crossref_primary_10_1002_cjce_23923
crossref_primary_10_1109_ACCESS_2022_3159711
crossref_primary_10_3233_JCM_226883
crossref_primary_10_1016_j_est_2021_103732
crossref_primary_10_1016_j_jprocont_2023_103134
crossref_primary_10_1016_j_measurement_2019_04_010
Cites_doi 10.1016/j.conengprac.2003.08.004
10.1016/j.chemolab.2004.08.003
10.1016/j.chemolab.2009.01.002
10.1016/S0098-1354(97)00262-7
10.1016/S0959-1524(00)00041-X
10.1080/14786440109462720
10.1016/0169-7439(93)E0075-F
10.1016/j.ces.2004.07.019
10.1080/00401706.1979.10489779
10.1016/S0098-1354(00)00433-6
10.1016/S0959-1524(00)00022-6
10.1016/S0967-0661(02)00096-5
10.1007/BF01396012
10.1016/j.chemolab.2010.04.002
10.1002/aic.11515
10.1016/j.jtice.2010.03.015
10.1016/j.isatra.2010.12.004
10.1021/ie048873f
10.1021/ie049081o
10.1016/j.compchemeng.2003.09.011
10.1016/S1474-6670(17)43143-0
10.1016/S0378-3758(96)00153-X
10.1016/j.csda.2009.01.004
10.1002/cem.800
10.1016/S0098-1354(02)00162-X
10.1016/S0967-0661(99)00038-6
10.1016/S0959-1524(01)00027-0
10.1037/0033-2909.99.3.432
10.1016/j.conengprac.2008.04.004
10.1016/0169-7439(95)00076-3
10.1016/j.eswa.2009.04.066
10.1016/j.jprocont.2010.06.018
10.1016/j.ces.2004.04.031
10.1016/j.chemolab.2013.04.002
10.1016/j.ces.2011.12.026
10.1016/0967-0661(95)00014-L
10.1016/S0169-7439(00)00058-7
10.1016/S0959-1524(97)80001-7
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
7TA
7TB
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.conengprac.2016.02.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 83
ExternalDocumentID 10_1016_j_conengprac_2016_02_010
S0967066116300326
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
7TA
7TB
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c351t-485519c24b5f622728c90c9408169d5068aef73ff3a68c350218d2b1e56a105c3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374612600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Sun Sep 28 10:23:22 EDT 2025
Sat Nov 29 07:09:00 EST 2025
Tue Nov 18 21:48:57 EST 2025
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-drifting
Fault detection
Eigenvector
Recursivity
False alarm
Eigenvalue
PCA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-485519c24b5f622728c90c9408169d5068aef73ff3a68c350218d2b1e56a105c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816018244
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1816018244
crossref_citationtrail_10_1016_j_conengprac_2016_02_010
crossref_primary_10_1016_j_conengprac_2016_02_010
elsevier_sciencedirect_doi_10_1016_j_conengprac_2016_02_010
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pearson (bib30) 1901
Wang, Kruger, Irwin (bib41) 2005
Maravelakis, Castagliola (bib27) 2009
Qin (bib31) 1998
Lee, Yoo, Lee (bib24) 2004
Rato, Reis (bib35) 2013
Cheng, Chiu (bib7) 2005
Naik, Yin, Ding, Zhang (bib29) 2010
Chen, Kruger, Meronk, Leung (bib6) 2004
Chen, Liao (bib5) 2002
Choi, Martin, Morris (bib9) 2005
Liu, Kruger, Littler (bib26) 2009
Los Angeles, 16–21 November 1997.
Gallagher, V.B., Wise, R.M., Butler, S.W., White, D.D., Barna, G.G.. Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in
Zwick, Velicer (bib49) 1986; 99
Venkatasubramanian, Rengaswamy, Kavuri, Yin (bib40) 2003
Rannar, S., MacGregor, J.F., Wold, S., Adaptive batch monitoring using hierarchical PCA. In
Zhiqiang, Zhihuan, Furong. (bib48) 2013
Hwang, Han. (bib17) 1999
Weihua, Yue, Valle-Cervantes, Qin (bib42) 2000; 10
Chow, K.C., Tan, K.-J., Tabe, H., Zhang, J., Thornhill, N.F.. Dynamic Principal Component Analysis Using Integral Transforms. In
Banff, Canada, 9–11 June 1997, pp. 78–83.
McGregor, Kourti (bib28) 1995
Yingwei, Shuai, Yongdong (bib46) 2012; 72
Wang, Kruger, Lennox (bib501) 2003; 11
Kano, Hasebe, Hashimoto, Ohno (bib22) 2000
Ge, Song (bib14) 2008
Rigopoulos, A., Arkun, Y., Kayihan, F., Hanezyc, E. Identification of paper machine full profile disturbances models using adaptive principal component analysis. In
Russell, Chiang, Braatz (bib38) 2000
24–26 October 2007, San Francisco, USA.
Torres, M., Posada, J., Garcia, J., Sanjuan, M. (2012). Real-time fault detection applied for natural gas pipelines. In
Amanian, K., Salahshoor, K., Jafari, M.R., Mosallaei, M. (2007). Soft Sensor Based on Dynamic Principal Component Analysis and Radial Basis Function Neural Network for Distillation Column. In: P
Dayal, MacGregor (bib12) 1997
Qin (bib33) 2003; 17
Iwashita (bib18) 1997
Jackson, Mudholkar (bib19) 1979
Miami Beach, November 1999, Paper No, 232(c).
Lin, Qian, Li (bib25) 2000
Russel, Chiang., Braatz. (bib37) 2000
Hotelling (bib16) 1947
Bunch, Nielsen, Sorensen (bib4) 1978
Kano, Hasebe, Hashimoto, Ohno (bib21) 2004; 28
Ku, Storer, Georgakis (bib23) 1995
Choi, Lee (bib10) 2004
Weihua, Qin (bib43) 2001; 11
Wold (bib45) 1994; 23
Qin (bib32) 1998
Tahoe, 7–12 January 1996, pp. 275-279
Ge, Song (bib15) 2010
Yu, Qin (bib47) 2008; 54
Jeng (bib20) 2010
November 9-15, Houston, Texas, USA.
Chiu, Ling (bib8) 2009
Alkaya, Eker (bib1) 2011
Russell (10.1016/j.conengprac.2016.02.010_bib38) 2000
Wang (10.1016/j.conengprac.2016.02.010_bib501) 2003; 11
Maravelakis (10.1016/j.conengprac.2016.02.010_bib27) 2009; 53
10.1016/j.conengprac.2016.02.010_bib2
Zhiqiang (10.1016/j.conengprac.2016.02.010_bib48) 2013
Pearson (10.1016/j.conengprac.2016.02.010_bib30) 1901; 2
Wang (10.1016/j.conengprac.2016.02.010_bib41) 2005; 44
Weihua (10.1016/j.conengprac.2016.02.010_bib42) 2000; 10
Cheng (10.1016/j.conengprac.2016.02.010_bib7) 2005; 2005
Liu (10.1016/j.conengprac.2016.02.010_bib26) 2009; 96
Yu (10.1016/j.conengprac.2016.02.010_bib47) 2008; 54
Hotelling (10.1016/j.conengprac.2016.02.010_bib16) 1947
Iwashita (10.1016/j.conengprac.2016.02.010_bib18) 1997; 61
Lin (10.1016/j.conengprac.2016.02.010_bib25) 2000; 24
Qin (10.1016/j.conengprac.2016.02.010_bib33) 2003; 17
10.1016/j.conengprac.2016.02.010_bib13
Ge (10.1016/j.conengprac.2016.02.010_bib14) 2008; 2008
Yingwei (10.1016/j.conengprac.2016.02.010_bib46) 2012; 72
Lee (10.1016/j.conengprac.2016.02.010_bib24) 2004; 59
10.1016/j.conengprac.2016.02.010_bib36
10.1016/j.conengprac.2016.02.010_bib11
Rato (10.1016/j.conengprac.2016.02.010_bib35) 2013; 125
Weihua (10.1016/j.conengprac.2016.02.010_bib43) 2001; 11
Choi (10.1016/j.conengprac.2016.02.010_bib9) 2005; 44
10.1016/j.conengprac.2016.02.010_bib34
Naik (10.1016/j.conengprac.2016.02.010_bib29) 2010; 20
Kano (10.1016/j.conengprac.2016.02.010_bib22) 2000; 24
Russel (10.1016/j.conengprac.2016.02.010_bib37) 2000; 51
Bunch (10.1016/j.conengprac.2016.02.010_bib4) 1978; 31
Zwick (10.1016/j.conengprac.2016.02.010_bib49) 1986; 99
Chiu (10.1016/j.conengprac.2016.02.010_bib8) 2009; 36
Jackson (10.1016/j.conengprac.2016.02.010_bib19) 1979; 21
Qin (10.1016/j.conengprac.2016.02.010_bib31) 1998; 22
Choi (10.1016/j.conengprac.2016.02.010_bib10) 2004; 59
Chen (10.1016/j.conengprac.2016.02.010_bib6) 2004; 12
Chen (10.1016/j.conengprac.2016.02.010_bib5) 2002; 12
Ku (10.1016/j.conengprac.2016.02.010_bib23) 1995; 30
Wold (10.1016/j.conengprac.2016.02.010_bib45) 1994; 23
10.1016/j.conengprac.2016.02.010_bib39
Venkatasubramanian (10.1016/j.conengprac.2016.02.010_bib40) 2003; 27
McGregor (10.1016/j.conengprac.2016.02.010_bib28) 1995; 3
Hwang (10.1016/j.conengprac.2016.02.010_bib17) 1999; 1999
Ge (10.1016/j.conengprac.2016.02.010_bib15) 2010; 102
Alkaya (10.1016/j.conengprac.2016.02.010_bib1) 2011; 50
Qin (10.1016/j.conengprac.2016.02.010_bib32) 1998; 22
Dayal (10.1016/j.conengprac.2016.02.010_bib12) 1997; 7
Jeng (10.1016/j.conengprac.2016.02.010_bib20) 2010; 41
Kano (10.1016/j.conengprac.2016.02.010_bib21) 2004; 28
References_xml – start-page: 2653
  year: 2009
  end-page: 2664
  ident: bib27
  article-title: EWMA chart for monitoring the process standard deviation when parameters are estimated
– reference: Torres, M., Posada, J., Garcia, J., Sanjuan, M. (2012). Real-time fault detection applied for natural gas pipelines. In:
– volume: 54
  start-page: 1811
  year: 2008
  end-page: 1829
  ident: bib47
  article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
  publication-title: AIChE J
– volume: 23
  start-page: 149
  year: 1994
  end-page: 161
  ident: bib45
  article-title: Exponentially weighted moving principal component analysis and projection to latent structures
  publication-title: Chemometrics and Intelligent Laboratory systems
– start-page: 403
  year: 1995
  end-page: 414
  ident: bib28
  article-title: Statistical process control of multivariate processes
– start-page: 101
  year: 2013
  end-page: 108
  ident: bib35
  article-title: Fault detection in the Tennessee Eastman benchmark process using dynamic principal component analysis based on decorrelated residuals (DPCA-DR)
– reference: . 24–26 October 2007, San Francisco, USA.
– year: 2000
  ident: bib38
– start-page: 1
  year: 2005
  end-page: 13
  ident: bib7
  article-title: Nonlinear process monitoring using JITL-PCA
– start-page: 5897
  year: 2004
  end-page: 5908
  ident: bib10
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
– start-page: 81
  year: 2000
  end-page: 93
  ident: bib37
  article-title: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
– start-page: 559
  year: 1901
  end-page: 572
  ident: bib30
  article-title: On lines and planes of closest fit to systems of points in space
– reference: Gallagher, V.B., Wise, R.M., Butler, S.W., White, D.D., Barna, G.G.. Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in:
– start-page: 31
  year: 1978
  end-page: 48
  ident: bib4
  article-title: Rank-one modification of the symmetric eigenproblem
– reference: November 9-15, Houston, Texas, USA.
– start-page: 1427
  year: 2008
  end-page: 1437
  ident: bib14
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  ident: bib33
  article-title: Statistical process monitoring: Basics and beyond
  publication-title: J Chemon
– volume: 72
  start-page: 78
  year: 2012
  end-page: 86
  ident: bib46
  article-title: Dynamic processes monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
– start-page: 287
  year: 2011
  end-page: 302
  ident: bib1
  article-title: Variance sensitive adaptive threshold-based PCA method for fault detection and diagnosis
– reference: Rigopoulos, A., Arkun, Y., Kayihan, F., Hanezyc, E. Identification of paper machine full profile disturbances models using adaptive principal component analysis. In:
– start-page: 277
  year: 2002
  end-page: 289
  ident: bib5
  article-title: Dynamic process fault monitoring based on neural network and PCA
– start-page: 503
  year: 1998
  end-page: 514
  ident: bib31
  article-title: Recursive PLS algorithms for adaptive data modelling
  publication-title: and
– start-page: 503
  year: 1998
  end-page: 514
  ident: bib32
  article-title: Recursive PLS algorithms for adaptive data monitoring
– start-page: 5691
  year: 2005
  end-page: 5702
  ident: bib41
  article-title: Process Monitoring Approach Using Fast Moving Window PCA
– start-page: 85
  year: 1997
  end-page: 104
  ident: bib18
  article-title: Asymptotic null and nonnull distribution of Hotelling’s T
– start-page: 12332
  year: 2009
  end-page: 12339
  ident: bib8
  article-title: A hybrid approach based on Hotelling statistics for automated visual inspection of display blemishes in LCD panels
– start-page: 2995
  year: 2004
  end-page: 3006
  ident: bib24
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
– start-page: 53
  year: 2010
  end-page: 61
  ident: bib15
  article-title: Maximum-likelihood mixture factor analysis model and its application for process monitoring
– start-page: 475
  year: 2010
  end-page: 481
  ident: bib20
  article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
– start-page: 2316
  year: 2005
  ident: bib9
  article-title: Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
– volume: 99
  start-page: 432
  year: 1986
  end-page: 442
  ident: bib49
  article-title: Comparison of five rules for determining the number of components to retain
  publication-title: Psychol Bull
– reference: Chow, K.C., Tan, K.-J., Tabe, H., Zhang, J., Thornhill, N.F.. Dynamic Principal Component Analysis Using Integral Transforms. In:
– volume: 11
  start-page: 613
  year: 2003
  end-page: 632
  ident: bib501
  article-title: Recursive partial least squares algorithms for monitoring complex industrial processes
  publication-title: Control Engineering Practice
– start-page: 891
  year: 1999
  end-page: 902
  ident: bib17
  article-title: Real-time monitoring for a process with multiple operating modes
– start-page: 1013
  year: 2000
  end-page: 1113
  ident: bib22
  article-title: A new multivariate statistical process monitoring method using principal component analysis
– start-page: 0745
  year: 2004
  end-page: 755
  ident: bib6
  article-title: Synthesis of T
– reference: Banff, Canada, 9–11 June 1997, pp. 78–83.
– start-page: 327
  year: 2003
  end-page: 346
  ident: bib40
  article-title: A review of process fault detection and diagnosis Part III: Process history based methods
– start-page: 423
  year: 2000
  end-page: 429
  ident: bib25
  article-title: Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis
– volume: 28
  start-page: 1157
  year: 2004
  end-page: 1166
  ident: bib21
  article-title: Evolution of multivariate statistical process control: application of independent component analysis and external analysis
  publication-title: Computers and Chemical Engineering
– start-page: 341
  year: 1979
  end-page: 349
  ident: bib19
  article-title: Control procedures for residuals associated with principal component analysis
– reference: Los Angeles, 16–21 November 1997.
– start-page: 957
  year: 2010
  end-page: 965
  ident: bib29
  article-title: Recursive identification algorithms to design fault detection systems
– start-page: 132
  year: 2009
  end-page: 143
  ident: bib26
  article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes
– volume: 10
  start-page: 471
  year: 2000
  end-page: 486
  ident: bib42
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: Journal of Process Control
– reference: Rannar, S., MacGregor, J.F., Wold, S., Adaptive batch monitoring using hierarchical PCA. In:
– volume: 11
  start-page: 661
  year: 2001
  end-page: 668
  ident: bib43
  article-title: Consistent dynamic PCA based on errors-in-variables subspace identification
  publication-title: Journal of Process Control
– start-page: 179
  year: 1995
  end-page: 196
  ident: bib23
  article-title: Disturbance detection and isolation by dynamic principal component analysis
– start-page: 11
  year: 1947
  end-page: 184
  ident: bib16
  article-title: Multivariate quality control-illustrated by air testing of sample bombsights
– reference: Amanian, K., Salahshoor, K., Jafari, M.R., Mosallaei, M. (2007). Soft Sensor Based on Dynamic Principal Component Analysis and Radial Basis Function Neural Network for Distillation Column. In: P
– year: 2013
  ident: bib48
  article-title: Review of recent research on data-based process monitoring
  publication-title: Industrial Engineering Chemistry Research.
– reference: . Miami Beach, November 1999, Paper No, 232(c).
– start-page: 169
  year: 1997
  end-page: 179
  ident: bib12
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
– reference: . Tahoe, 7–12 January 1996, pp. 275-279
– volume: 12
  start-page: 0745
  year: 2004
  ident: 10.1016/j.conengprac.2016.02.010_bib6
  article-title: Synthesis of T2 and Q statistics for process monitoring
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2003.08.004
– volume: 2005
  start-page: 1
  issue: 76
  year: 2005
  ident: 10.1016/j.conengprac.2016.02.010_bib7
  article-title: Nonlinear process monitoring using JITL-PCA
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2004.08.003
– volume: 96
  start-page: 132
  year: 2009
  ident: 10.1016/j.conengprac.2016.02.010_bib26
  article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2009.01.002
– volume: 22
  start-page: 503
  issue: 4
  year: 1998
  ident: 10.1016/j.conengprac.2016.02.010_bib31
  article-title: Recursive PLS algorithms for adaptive data modelling
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 11
  start-page: 661
  year: 2001
  ident: 10.1016/j.conengprac.2016.02.010_bib43
  article-title: Consistent dynamic PCA based on errors-in-variables subspace identification
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(00)00041-X
– volume: 2
  start-page: 559
  year: 1901
  ident: 10.1016/j.conengprac.2016.02.010_bib30
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine. Series B
  doi: 10.1080/14786440109462720
– volume: 23
  start-page: 149
  year: 1994
  ident: 10.1016/j.conengprac.2016.02.010_bib45
  article-title: Exponentially weighted moving principal component analysis and projection to latent structures
  publication-title: Chemometrics and Intelligent Laboratory systems
  doi: 10.1016/0169-7439(93)E0075-F
– start-page: 11
  year: 1947
  ident: 10.1016/j.conengprac.2016.02.010_bib16
  article-title: Multivariate quality control-illustrated by air testing of sample bombsights
– volume: 59
  start-page: 5897
  year: 2004
  ident: 10.1016/j.conengprac.2016.02.010_bib10
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2004.07.019
– volume: 21
  start-page: 341
  year: 1979
  ident: 10.1016/j.conengprac.2016.02.010_bib19
  article-title: Control procedures for residuals associated with principal component analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489779
– volume: 24
  start-page: 423
  year: 2000
  ident: 10.1016/j.conengprac.2016.02.010_bib25
  article-title: Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis
  publication-title: Computer and Chemical Engineering
  doi: 10.1016/S0098-1354(00)00433-6
– volume: 10
  start-page: 471
  year: 2000
  ident: 10.1016/j.conengprac.2016.02.010_bib42
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(00)00022-6
– volume: 11
  start-page: 613
  year: 2003
  ident: 10.1016/j.conengprac.2016.02.010_bib501
  article-title: Recursive partial least squares algorithms for monitoring complex industrial processes
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(02)00096-5
– volume: 31
  start-page: 31
  issue: 1
  year: 1978
  ident: 10.1016/j.conengprac.2016.02.010_bib4
  article-title: Rank-one modification of the symmetric eigenproblem
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01396012
– volume: 102
  start-page: 53
  year: 2010
  ident: 10.1016/j.conengprac.2016.02.010_bib15
  article-title: Maximum-likelihood mixture factor analysis model and its application for process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2010.04.002
– volume: 54
  start-page: 1811
  year: 2008
  ident: 10.1016/j.conengprac.2016.02.010_bib47
  article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
  publication-title: AIChE J
  doi: 10.1002/aic.11515
– ident: 10.1016/j.conengprac.2016.02.010_bib2
– volume: 41
  start-page: 475
  year: 2010
  ident: 10.1016/j.conengprac.2016.02.010_bib20
  article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2010.03.015
– volume: 50
  start-page: 287
  year: 2011
  ident: 10.1016/j.conengprac.2016.02.010_bib1
  article-title: Variance sensitive adaptive threshold-based PCA method for fault detection and diagnosis
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2010.12.004
– volume: 24
  start-page: 1013
  year: 2000
  ident: 10.1016/j.conengprac.2016.02.010_bib22
  article-title: A new multivariate statistical process monitoring method using principal component analysis
  publication-title: Computer and Chemical Engineering
– volume: 44
  start-page: 5691
  year: 2005
  ident: 10.1016/j.conengprac.2016.02.010_bib41
  article-title: Process Monitoring Approach Using Fast Moving Window PCA
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie048873f
– volume: 44
  start-page: 2316
  year: 2005
  ident: 10.1016/j.conengprac.2016.02.010_bib9
  article-title: Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie049081o
– volume: 28
  start-page: 1157
  year: 2004
  ident: 10.1016/j.conengprac.2016.02.010_bib21
  article-title: Evolution of multivariate statistical process control: application of independent component analysis and external analysis
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/j.compchemeng.2003.09.011
– ident: 10.1016/j.conengprac.2016.02.010_bib39
– ident: 10.1016/j.conengprac.2016.02.010_bib13
  doi: 10.1016/S1474-6670(17)43143-0
– volume: 61
  start-page: 85
  year: 1997
  ident: 10.1016/j.conengprac.2016.02.010_bib18
  article-title: Asymptotic null and nonnull distribution of Hotelling’s T2-statistic under the elliptical distribution
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(96)00153-X
– volume: 53
  start-page: 2653
  year: 2009
  ident: 10.1016/j.conengprac.2016.02.010_bib27
  article-title: EWMA chart for monitoring the process standard deviation when parameters are estimated
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.01.004
– ident: 10.1016/j.conengprac.2016.02.010_bib34
– year: 2000
  ident: 10.1016/j.conengprac.2016.02.010_bib38
– ident: 10.1016/j.conengprac.2016.02.010_bib11
– volume: 17
  start-page: 480
  issue: 8-9
  year: 2003
  ident: 10.1016/j.conengprac.2016.02.010_bib33
  article-title: Statistical process monitoring: Basics and beyond
  publication-title: J Chemon
  doi: 10.1002/cem.800
– year: 2013
  ident: 10.1016/j.conengprac.2016.02.010_bib48
  article-title: Review of recent research on data-based process monitoring
  publication-title: Industrial Engineering Chemistry Research.
– volume: 27
  start-page: 327
  year: 2003
  ident: 10.1016/j.conengprac.2016.02.010_bib40
  article-title: A review of process fault detection and diagnosis Part III: Process history based methods
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(02)00162-X
– volume: 1999
  start-page: 891
  issue: 7
  year: 1999
  ident: 10.1016/j.conengprac.2016.02.010_bib17
  article-title: Real-time monitoring for a process with multiple operating modes
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(99)00038-6
– volume: 12
  start-page: 277
  year: 2002
  ident: 10.1016/j.conengprac.2016.02.010_bib5
  article-title: Dynamic process fault monitoring based on neural network and PCA
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(01)00027-0
– volume: 99
  start-page: 432
  year: 1986
  ident: 10.1016/j.conengprac.2016.02.010_bib49
  article-title: Comparison of five rules for determining the number of components to retain
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.99.3.432
– volume: 2008
  start-page: 1427
  issue: 16
  year: 2008
  ident: 10.1016/j.conengprac.2016.02.010_bib14
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2008.04.004
– volume: 30
  start-page: 179
  year: 1995
  ident: 10.1016/j.conengprac.2016.02.010_bib23
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(95)00076-3
– volume: 36
  start-page: 12332
  year: 2009
  ident: 10.1016/j.conengprac.2016.02.010_bib8
  article-title: A hybrid approach based on Hotelling statistics for automated visual inspection of display blemishes in LCD panels
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.066
– volume: 20
  start-page: 957
  year: 2010
  ident: 10.1016/j.conengprac.2016.02.010_bib29
  article-title: Recursive identification algorithms to design fault detection systems
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2010.06.018
– volume: 59
  start-page: 2995
  year: 2004
  ident: 10.1016/j.conengprac.2016.02.010_bib24
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2004.04.031
– volume: 22
  start-page: 503
  year: 1998
  ident: 10.1016/j.conengprac.2016.02.010_bib32
  article-title: Recursive PLS algorithms for adaptive data monitoring
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 125
  start-page: 101
  year: 2013
  ident: 10.1016/j.conengprac.2016.02.010_bib35
  article-title: Fault detection in the Tennessee Eastman benchmark process using dynamic principal component analysis based on decorrelated residuals (DPCA-DR)
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2013.04.002
– volume: 72
  start-page: 78
  year: 2012
  ident: 10.1016/j.conengprac.2016.02.010_bib46
  article-title: Dynamic processes monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2011.12.026
– volume: 3
  start-page: 403
  issue: 3
  year: 1995
  ident: 10.1016/j.conengprac.2016.02.010_bib28
  article-title: Statistical process control of multivariate processes
  publication-title: Control Engineering Practice
  doi: 10.1016/0967-0661(95)00014-L
– ident: 10.1016/j.conengprac.2016.02.010_bib36
– volume: 51
  start-page: 81
  year: 2000
  ident: 10.1016/j.conengprac.2016.02.010_bib37
  article-title: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(00)00058-7
– volume: 7
  start-page: 169
  year: 1997
  ident: 10.1016/j.conengprac.2016.02.010_bib12
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(97)80001-7
SSID ssj0016991
Score 2.4468775
Snippet A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Algorithms
Complexity
Computation
Delay
Eigenvalue
Eigenvalues
Eigenvector
False alarm
False alarms
Fault detection
PCA
Recursive
Recursivity
Time-drifting
Warp
Title An improved weighted recursive PCA algorithm for adaptive fault detection
URI https://dx.doi.org/10.1016/j.conengprac.2016.02.010
https://www.proquest.com/docview/1816018244
Volume 50
WOSCitedRecordID wos000374612600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbg_tofRJty9U6C24-Clb9GTClk3bXQLdQm5GkeVuQqqErGOWve__7owl2WnZQkrpxQQbxWLm82g0-vSJkHey4kKwUnql4MzDE409IXnkQXIRKhGHVVW1kvlf0rOzbDrlk8Hgxu2FaZap1tnVFV__V1fDPXA2bp39C3d3fwo34Dc4Ha7gdrju5fhc49bHzapBYnlb-FS4Q0ViWaBRw8koH4rl99VmXl_8MBzKUqyN-rfYLuthqeqWnqV389aRZbSrXr6w22DVRVfI5LUp7Y2bHnSnOLDZQvVnGIa7B5O5vjZr_ieAQ2kIYW21R-jF1hRmT8E5q93KRMB6HqApl7ktMz0_qa07MuTbGQX298pE3SyNPMaNqpELy0aP1sZVc5yLG6GjW2O_KUMswHUajIE2QOYeayVZLXX2V2Xtr9gX7EqAumOQx94hhyHMnyA4Hubj4-mnbjmKcXP0ouu7pYQZouDt7_tTnvPbiN-mMecPyQM7_6C5wc0jMlD6Mbm_o0r5hIxzTR2CqEMQ7RBEAUG0QxAFBFGHINoiiHYIekq-fTw-H5149sQNT0ZJUHuoFBRwGcazpGJhmIaZ5L7kMZ7OwsvEZ5lQVRrB9ytYBk0wQSzDWaASJiBRl9EzcqDBHM8JjapIzvzKF9geZnCCCZWqKMGMNeAZOyKps08hrRw9noqyLBzvcFH0li3QsoUfFmDZIxJ0LddGkmWPNh-cCwqbWpqUsQD07NH6rfNaAdEXl9SEVqvtZQH5MfNhih7HL_7pDS_Jvf4LekUO6s1WvSZ3ZVPPLzdvLBx_AnOPsSo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+weighted+recursive+PCA+algorithm+for+adaptive+fault+detection&rft.jtitle=Control+engineering+practice&rft.au=Portnoy%2C+Ivan&rft.au=Melendez%2C+Kevin&rft.au=Pinzon%2C+Horacio&rft.au=Sanjuan%2C+Marco&rft.date=2016-05-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=50&rft.spage=69&rft.epage=83&rft_id=info:doi/10.1016%2Fj.conengprac.2016.02.010&rft.externalDocID=S0967066116300326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon