An improved weighted recursive PCA algorithm for adaptive fault detection
A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real proces...
Saved in:
| Published in: | Control engineering practice Vol. 50; pp. 69 - 83 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2016
|
| Subjects: | |
| ISSN: | 0967-0661, 1873-6939 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP).
The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well.
A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update.
[Display omitted]
•A novel weighted recursive PCA-based fault detection technique is developed.•The false alarm rate in process monitoring due to time-drifting changes is reduced.•Performance of two existing algorithms is compared to the proposed technique.•The computational complexity (FLOPs required for update) is significantly reduced. |
|---|---|
| AbstractList | A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP).
The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well.
A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update.
[Display omitted]
•A novel weighted recursive PCA-based fault detection technique is developed.•The false alarm rate in process monitoring due to time-drifting changes is reduced.•Performance of two existing algorithms is compared to the proposed technique.•The computational complexity (FLOPs required for update) is significantly reduced. A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in false alarm rate in process monitoring schemes due to the natural, slow and normal process changes (aging), which often occurs in real processes. It has been named as weighted adaptive recursive PCA (WARP). The aforementioned problem is addressed recursively by updating the eigenstructure (eigenvalues and eigenvectors) of the statistical detection model when the false alarm rate increases given the awareness of non-faulty condition. The update is carried out by incorporating the new available information within a specific online process dataset, instead of keeping a fixed statistical model such as conventional PCA does. To achieve this recursive updating, equations for means, standard deviations, covariance matrix, eigenvalues and eigenvectors are developed. The statistical thresholds and the number of principal components are updated as well. A comparison between the proposed algorithm and other recursive PCA-based algorithms is carried out in terms of false alarm rate, misdetection rate, detection delay and its computational complexity. WARP features a significant reduction of the computational complexity while maintaining a similar performance on false alarm rate, misdetection rate and detection delay compared to that of the other existing PCA-based recursive algorithms. The computational complexity is assessed in terms of the Floating Operation Points (FLOPs) needed to carry out the update. |
| Author | Sanjuan, Marco Portnoy, Ivan Pinzon, Horacio Melendez, Kevin |
| Author_xml | – sequence: 1 givenname: Ivan surname: Portnoy fullname: Portnoy, Ivan email: iportnoy@uninote.edu.co – sequence: 2 givenname: Kevin surname: Melendez fullname: Melendez, Kevin email: vkevin@uninorte.edu.co, kmelendez09@hotmail.com – sequence: 3 givenname: Horacio surname: Pinzon fullname: Pinzon, Horacio email: horacio.pinzon@gmail.com, hcoronado@uninorte.edu.co – sequence: 4 givenname: Marco surname: Sanjuan fullname: Sanjuan, Marco email: msanjuan@uninorte.edu.co |
| BookMark | eNqNkF9LwzAUxYNMcJt-hz760pqkbZq-CHP4ZzDQB30OWXqzZbTNTNKJ396UCYIv-nQv955zOPxmaNLbHhBKCM4IJuxmn6l46LcHJ1VG4yXDNMMEn6Ep4VWesjqvJ2iKa1almDFygWbe73EU1jWZotWiT0x3cPYITfIBZrsLcXGgBufNEZKX5SKR7dY6E3Zdoq1LZCMPYXxpObQhaSCACsb2l-hcy9bD1feco7eH-9flU7p-flwtF-tU5SUJacHLktSKFptSM0orylWNVV1gHhs1JWZcgq5yrXPJeLRgSnhDNwRKJgkuVT5H16fcWPp9AB9EZ7yCtpU92MELEoMw4bQoovT2JFXOeu9AC2WCHMsGJ00rCBYjQ7EXPwzFyFBgKiLDGMB_BRyc6aT7_I_17mSFyOJowAmvDPQKGhPpBtFY83fIF5M2k_c |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2018_05_018 crossref_primary_10_1016_j_ifacol_2022_07_199 crossref_primary_10_1016_j_cherd_2018_12_028 crossref_primary_10_1016_j_psep_2024_12_066 crossref_primary_10_1016_j_anucene_2022_109323 crossref_primary_10_1016_j_bspc_2022_104551 crossref_primary_10_1016_j_conengprac_2016_10_015 crossref_primary_10_1016_j_conengprac_2016_10_014 crossref_primary_10_1109_ACCESS_2019_2939576 crossref_primary_10_1155_2021_9954172 crossref_primary_10_1109_TCYB_2022_3176475 crossref_primary_10_1016_j_ces_2024_120059 crossref_primary_10_1016_j_conengprac_2021_105038 crossref_primary_10_1016_j_cma_2020_113334 crossref_primary_10_1002_cem_70020 crossref_primary_10_1016_j_conengprac_2019_03_015 crossref_primary_10_1016_j_procs_2023_09_074 crossref_primary_10_3390_s21134394 crossref_primary_10_3390_app13063409 crossref_primary_10_1002_cjce_25478 crossref_primary_10_1109_ACCESS_2018_2873806 crossref_primary_10_1016_j_arcontrol_2016_09_008 crossref_primary_10_1016_j_cie_2021_107893 crossref_primary_10_1016_j_conengprac_2017_06_003 crossref_primary_10_1016_j_anucene_2021_108621 crossref_primary_10_1177_0020294019858103 crossref_primary_10_1080_09720529_2017_1310979 crossref_primary_10_1016_j_jprocont_2019_09_004 crossref_primary_10_1016_j_jprocont_2022_11_010 crossref_primary_10_1109_TCST_2018_2865413 crossref_primary_10_1016_j_optlaseng_2020_106039 crossref_primary_10_1002_cem_3142 crossref_primary_10_1002_cjce_25129 crossref_primary_10_2514_1_J060349 crossref_primary_10_1007_s12555_024_0081_3 crossref_primary_10_1016_j_conengprac_2016_09_014 crossref_primary_10_1002_cjce_24494 crossref_primary_10_1016_j_procs_2024_11_184 crossref_primary_10_1016_j_conengprac_2019_07_017 crossref_primary_10_1016_j_conengprac_2017_05_005 crossref_primary_10_1016_j_engappai_2023_106145 crossref_primary_10_1016_j_conengprac_2017_06_011 crossref_primary_10_3390_pr12061218 crossref_primary_10_21303_2461_4262_2022_002701 crossref_primary_10_1016_j_conengprac_2023_105804 crossref_primary_10_1109_TIE_2023_3299013 crossref_primary_10_1016_j_conengprac_2019_04_008 crossref_primary_10_1109_ACCESS_2019_2920699 crossref_primary_10_1016_j_jsv_2021_116344 crossref_primary_10_1016_j_conengprac_2018_10_003 crossref_primary_10_1016_j_jfranklin_2022_04_022 crossref_primary_10_1002_cjce_24066 crossref_primary_10_1016_j_psep_2023_04_036 crossref_primary_10_3390_electronics10243161 crossref_primary_10_1016_j_compind_2020_103279 crossref_primary_10_1051_mfreview_2020027 crossref_primary_10_1109_TIM_2022_3186081 crossref_primary_10_1109_ACCESS_2024_3517321 crossref_primary_10_1016_j_conengprac_2017_03_001 crossref_primary_10_1109_ACCESS_2020_3022771 crossref_primary_10_1016_j_ijcip_2018_10_008 crossref_primary_10_1016_j_apenergy_2024_124615 crossref_primary_10_1002_cjce_23923 crossref_primary_10_1109_ACCESS_2022_3159711 crossref_primary_10_3233_JCM_226883 crossref_primary_10_1016_j_est_2021_103732 crossref_primary_10_1016_j_jprocont_2023_103134 crossref_primary_10_1016_j_measurement_2019_04_010 |
| Cites_doi | 10.1016/j.conengprac.2003.08.004 10.1016/j.chemolab.2004.08.003 10.1016/j.chemolab.2009.01.002 10.1016/S0098-1354(97)00262-7 10.1016/S0959-1524(00)00041-X 10.1080/14786440109462720 10.1016/0169-7439(93)E0075-F 10.1016/j.ces.2004.07.019 10.1080/00401706.1979.10489779 10.1016/S0098-1354(00)00433-6 10.1016/S0959-1524(00)00022-6 10.1016/S0967-0661(02)00096-5 10.1007/BF01396012 10.1016/j.chemolab.2010.04.002 10.1002/aic.11515 10.1016/j.jtice.2010.03.015 10.1016/j.isatra.2010.12.004 10.1021/ie048873f 10.1021/ie049081o 10.1016/j.compchemeng.2003.09.011 10.1016/S1474-6670(17)43143-0 10.1016/S0378-3758(96)00153-X 10.1016/j.csda.2009.01.004 10.1002/cem.800 10.1016/S0098-1354(02)00162-X 10.1016/S0967-0661(99)00038-6 10.1016/S0959-1524(01)00027-0 10.1037/0033-2909.99.3.432 10.1016/j.conengprac.2008.04.004 10.1016/0169-7439(95)00076-3 10.1016/j.eswa.2009.04.066 10.1016/j.jprocont.2010.06.018 10.1016/j.ces.2004.04.031 10.1016/j.chemolab.2013.04.002 10.1016/j.ces.2011.12.026 10.1016/0967-0661(95)00014-L 10.1016/S0169-7439(00)00058-7 10.1016/S0959-1524(97)80001-7 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7SP 7TA 7TB 8FD FR3 JG9 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.conengprac.2016.02.010 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| EndPage | 83 |
| ExternalDocumentID | 10_1016_j_conengprac_2016_02_010 S0967066116300326 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 7TA 7TB 8FD FR3 JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c351t-485519c24b5f622728c90c9408169d5068aef73ff3a68c350218d2b1e56a105c3 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374612600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Sun Sep 28 10:23:22 EDT 2025 Sat Nov 29 07:09:00 EST 2025 Tue Nov 18 21:48:57 EST 2025 Fri Feb 23 02:35:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time-drifting Fault detection Eigenvector Recursivity False alarm Eigenvalue PCA |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c351t-485519c24b5f622728c90c9408169d5068aef73ff3a68c350218d2b1e56a105c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1816018244 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1816018244 crossref_citationtrail_10_1016_j_conengprac_2016_02_010 crossref_primary_10_1016_j_conengprac_2016_02_010 elsevier_sciencedirect_doi_10_1016_j_conengprac_2016_02_010 |
| PublicationCentury | 2000 |
| PublicationDate | May 2016 2016-05-00 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pearson (bib30) 1901 Wang, Kruger, Irwin (bib41) 2005 Maravelakis, Castagliola (bib27) 2009 Qin (bib31) 1998 Lee, Yoo, Lee (bib24) 2004 Rato, Reis (bib35) 2013 Cheng, Chiu (bib7) 2005 Naik, Yin, Ding, Zhang (bib29) 2010 Chen, Kruger, Meronk, Leung (bib6) 2004 Chen, Liao (bib5) 2002 Choi, Martin, Morris (bib9) 2005 Liu, Kruger, Littler (bib26) 2009 Los Angeles, 16–21 November 1997. Gallagher, V.B., Wise, R.M., Butler, S.W., White, D.D., Barna, G.G.. Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in Zwick, Velicer (bib49) 1986; 99 Venkatasubramanian, Rengaswamy, Kavuri, Yin (bib40) 2003 Rannar, S., MacGregor, J.F., Wold, S., Adaptive batch monitoring using hierarchical PCA. In Zhiqiang, Zhihuan, Furong. (bib48) 2013 Hwang, Han. (bib17) 1999 Weihua, Yue, Valle-Cervantes, Qin (bib42) 2000; 10 Chow, K.C., Tan, K.-J., Tabe, H., Zhang, J., Thornhill, N.F.. Dynamic Principal Component Analysis Using Integral Transforms. In Banff, Canada, 9–11 June 1997, pp. 78–83. McGregor, Kourti (bib28) 1995 Yingwei, Shuai, Yongdong (bib46) 2012; 72 Wang, Kruger, Lennox (bib501) 2003; 11 Kano, Hasebe, Hashimoto, Ohno (bib22) 2000 Ge, Song (bib14) 2008 Rigopoulos, A., Arkun, Y., Kayihan, F., Hanezyc, E. Identification of paper machine full profile disturbances models using adaptive principal component analysis. In Russell, Chiang, Braatz (bib38) 2000 24–26 October 2007, San Francisco, USA. Torres, M., Posada, J., Garcia, J., Sanjuan, M. (2012). Real-time fault detection applied for natural gas pipelines. In Amanian, K., Salahshoor, K., Jafari, M.R., Mosallaei, M. (2007). Soft Sensor Based on Dynamic Principal Component Analysis and Radial Basis Function Neural Network for Distillation Column. In: P Dayal, MacGregor (bib12) 1997 Qin (bib33) 2003; 17 Iwashita (bib18) 1997 Jackson, Mudholkar (bib19) 1979 Miami Beach, November 1999, Paper No, 232(c). Lin, Qian, Li (bib25) 2000 Russel, Chiang., Braatz. (bib37) 2000 Hotelling (bib16) 1947 Bunch, Nielsen, Sorensen (bib4) 1978 Kano, Hasebe, Hashimoto, Ohno (bib21) 2004; 28 Ku, Storer, Georgakis (bib23) 1995 Choi, Lee (bib10) 2004 Weihua, Qin (bib43) 2001; 11 Wold (bib45) 1994; 23 Qin (bib32) 1998 Tahoe, 7–12 January 1996, pp. 275-279 Ge, Song (bib15) 2010 Yu, Qin (bib47) 2008; 54 Jeng (bib20) 2010 November 9-15, Houston, Texas, USA. Chiu, Ling (bib8) 2009 Alkaya, Eker (bib1) 2011 Russell (10.1016/j.conengprac.2016.02.010_bib38) 2000 Wang (10.1016/j.conengprac.2016.02.010_bib501) 2003; 11 Maravelakis (10.1016/j.conengprac.2016.02.010_bib27) 2009; 53 10.1016/j.conengprac.2016.02.010_bib2 Zhiqiang (10.1016/j.conengprac.2016.02.010_bib48) 2013 Pearson (10.1016/j.conengprac.2016.02.010_bib30) 1901; 2 Wang (10.1016/j.conengprac.2016.02.010_bib41) 2005; 44 Weihua (10.1016/j.conengprac.2016.02.010_bib42) 2000; 10 Cheng (10.1016/j.conengprac.2016.02.010_bib7) 2005; 2005 Liu (10.1016/j.conengprac.2016.02.010_bib26) 2009; 96 Yu (10.1016/j.conengprac.2016.02.010_bib47) 2008; 54 Hotelling (10.1016/j.conengprac.2016.02.010_bib16) 1947 Iwashita (10.1016/j.conengprac.2016.02.010_bib18) 1997; 61 Lin (10.1016/j.conengprac.2016.02.010_bib25) 2000; 24 Qin (10.1016/j.conengprac.2016.02.010_bib33) 2003; 17 10.1016/j.conengprac.2016.02.010_bib13 Ge (10.1016/j.conengprac.2016.02.010_bib14) 2008; 2008 Yingwei (10.1016/j.conengprac.2016.02.010_bib46) 2012; 72 Lee (10.1016/j.conengprac.2016.02.010_bib24) 2004; 59 10.1016/j.conengprac.2016.02.010_bib36 10.1016/j.conengprac.2016.02.010_bib11 Rato (10.1016/j.conengprac.2016.02.010_bib35) 2013; 125 Weihua (10.1016/j.conengprac.2016.02.010_bib43) 2001; 11 Choi (10.1016/j.conengprac.2016.02.010_bib9) 2005; 44 10.1016/j.conengprac.2016.02.010_bib34 Naik (10.1016/j.conengprac.2016.02.010_bib29) 2010; 20 Kano (10.1016/j.conengprac.2016.02.010_bib22) 2000; 24 Russel (10.1016/j.conengprac.2016.02.010_bib37) 2000; 51 Bunch (10.1016/j.conengprac.2016.02.010_bib4) 1978; 31 Zwick (10.1016/j.conengprac.2016.02.010_bib49) 1986; 99 Chiu (10.1016/j.conengprac.2016.02.010_bib8) 2009; 36 Jackson (10.1016/j.conengprac.2016.02.010_bib19) 1979; 21 Qin (10.1016/j.conengprac.2016.02.010_bib31) 1998; 22 Choi (10.1016/j.conengprac.2016.02.010_bib10) 2004; 59 Chen (10.1016/j.conengprac.2016.02.010_bib6) 2004; 12 Chen (10.1016/j.conengprac.2016.02.010_bib5) 2002; 12 Ku (10.1016/j.conengprac.2016.02.010_bib23) 1995; 30 Wold (10.1016/j.conengprac.2016.02.010_bib45) 1994; 23 10.1016/j.conengprac.2016.02.010_bib39 Venkatasubramanian (10.1016/j.conengprac.2016.02.010_bib40) 2003; 27 McGregor (10.1016/j.conengprac.2016.02.010_bib28) 1995; 3 Hwang (10.1016/j.conengprac.2016.02.010_bib17) 1999; 1999 Ge (10.1016/j.conengprac.2016.02.010_bib15) 2010; 102 Alkaya (10.1016/j.conengprac.2016.02.010_bib1) 2011; 50 Qin (10.1016/j.conengprac.2016.02.010_bib32) 1998; 22 Dayal (10.1016/j.conengprac.2016.02.010_bib12) 1997; 7 Jeng (10.1016/j.conengprac.2016.02.010_bib20) 2010; 41 Kano (10.1016/j.conengprac.2016.02.010_bib21) 2004; 28 |
| References_xml | – start-page: 2653 year: 2009 end-page: 2664 ident: bib27 article-title: EWMA chart for monitoring the process standard deviation when parameters are estimated – reference: Torres, M., Posada, J., Garcia, J., Sanjuan, M. (2012). Real-time fault detection applied for natural gas pipelines. In: – volume: 54 start-page: 1811 year: 2008 end-page: 1829 ident: bib47 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AIChE J – volume: 23 start-page: 149 year: 1994 end-page: 161 ident: bib45 article-title: Exponentially weighted moving principal component analysis and projection to latent structures publication-title: Chemometrics and Intelligent Laboratory systems – start-page: 403 year: 1995 end-page: 414 ident: bib28 article-title: Statistical process control of multivariate processes – start-page: 101 year: 2013 end-page: 108 ident: bib35 article-title: Fault detection in the Tennessee Eastman benchmark process using dynamic principal component analysis based on decorrelated residuals (DPCA-DR) – reference: . 24–26 October 2007, San Francisco, USA. – year: 2000 ident: bib38 – start-page: 1 year: 2005 end-page: 13 ident: bib7 article-title: Nonlinear process monitoring using JITL-PCA – start-page: 5897 year: 2004 end-page: 5908 ident: bib10 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA – start-page: 81 year: 2000 end-page: 93 ident: bib37 article-title: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis – start-page: 559 year: 1901 end-page: 572 ident: bib30 article-title: On lines and planes of closest fit to systems of points in space – reference: Gallagher, V.B., Wise, R.M., Butler, S.W., White, D.D., Barna, G.G.. Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in: – start-page: 31 year: 1978 end-page: 48 ident: bib4 article-title: Rank-one modification of the symmetric eigenproblem – reference: November 9-15, Houston, Texas, USA. – start-page: 1427 year: 2008 end-page: 1437 ident: bib14 article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach – volume: 17 start-page: 480 year: 2003 end-page: 502 ident: bib33 article-title: Statistical process monitoring: Basics and beyond publication-title: J Chemon – volume: 72 start-page: 78 year: 2012 end-page: 86 ident: bib46 article-title: Dynamic processes monitoring using kernel principal component analysis publication-title: Chemical Engineering Science – start-page: 287 year: 2011 end-page: 302 ident: bib1 article-title: Variance sensitive adaptive threshold-based PCA method for fault detection and diagnosis – reference: Rigopoulos, A., Arkun, Y., Kayihan, F., Hanezyc, E. Identification of paper machine full profile disturbances models using adaptive principal component analysis. In: – start-page: 277 year: 2002 end-page: 289 ident: bib5 article-title: Dynamic process fault monitoring based on neural network and PCA – start-page: 503 year: 1998 end-page: 514 ident: bib31 article-title: Recursive PLS algorithms for adaptive data modelling publication-title: and – start-page: 503 year: 1998 end-page: 514 ident: bib32 article-title: Recursive PLS algorithms for adaptive data monitoring – start-page: 5691 year: 2005 end-page: 5702 ident: bib41 article-title: Process Monitoring Approach Using Fast Moving Window PCA – start-page: 85 year: 1997 end-page: 104 ident: bib18 article-title: Asymptotic null and nonnull distribution of Hotelling’s T – start-page: 12332 year: 2009 end-page: 12339 ident: bib8 article-title: A hybrid approach based on Hotelling statistics for automated visual inspection of display blemishes in LCD panels – start-page: 2995 year: 2004 end-page: 3006 ident: bib24 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis – start-page: 53 year: 2010 end-page: 61 ident: bib15 article-title: Maximum-likelihood mixture factor analysis model and its application for process monitoring – start-page: 475 year: 2010 end-page: 481 ident: bib20 article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms – start-page: 2316 year: 2005 ident: bib9 article-title: Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture – volume: 99 start-page: 432 year: 1986 end-page: 442 ident: bib49 article-title: Comparison of five rules for determining the number of components to retain publication-title: Psychol Bull – reference: Chow, K.C., Tan, K.-J., Tabe, H., Zhang, J., Thornhill, N.F.. Dynamic Principal Component Analysis Using Integral Transforms. In: – volume: 11 start-page: 613 year: 2003 end-page: 632 ident: bib501 article-title: Recursive partial least squares algorithms for monitoring complex industrial processes publication-title: Control Engineering Practice – start-page: 891 year: 1999 end-page: 902 ident: bib17 article-title: Real-time monitoring for a process with multiple operating modes – start-page: 1013 year: 2000 end-page: 1113 ident: bib22 article-title: A new multivariate statistical process monitoring method using principal component analysis – start-page: 0745 year: 2004 end-page: 755 ident: bib6 article-title: Synthesis of T – reference: Banff, Canada, 9–11 June 1997, pp. 78–83. – start-page: 327 year: 2003 end-page: 346 ident: bib40 article-title: A review of process fault detection and diagnosis Part III: Process history based methods – start-page: 423 year: 2000 end-page: 429 ident: bib25 article-title: Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis – volume: 28 start-page: 1157 year: 2004 end-page: 1166 ident: bib21 article-title: Evolution of multivariate statistical process control: application of independent component analysis and external analysis publication-title: Computers and Chemical Engineering – start-page: 341 year: 1979 end-page: 349 ident: bib19 article-title: Control procedures for residuals associated with principal component analysis – reference: Los Angeles, 16–21 November 1997. – start-page: 957 year: 2010 end-page: 965 ident: bib29 article-title: Recursive identification algorithms to design fault detection systems – start-page: 132 year: 2009 end-page: 143 ident: bib26 article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes – volume: 10 start-page: 471 year: 2000 end-page: 486 ident: bib42 article-title: Recursive PCA for adaptive process monitoring publication-title: Journal of Process Control – reference: Rannar, S., MacGregor, J.F., Wold, S., Adaptive batch monitoring using hierarchical PCA. In: – volume: 11 start-page: 661 year: 2001 end-page: 668 ident: bib43 article-title: Consistent dynamic PCA based on errors-in-variables subspace identification publication-title: Journal of Process Control – start-page: 179 year: 1995 end-page: 196 ident: bib23 article-title: Disturbance detection and isolation by dynamic principal component analysis – start-page: 11 year: 1947 end-page: 184 ident: bib16 article-title: Multivariate quality control-illustrated by air testing of sample bombsights – reference: Amanian, K., Salahshoor, K., Jafari, M.R., Mosallaei, M. (2007). Soft Sensor Based on Dynamic Principal Component Analysis and Radial Basis Function Neural Network for Distillation Column. In: P – year: 2013 ident: bib48 article-title: Review of recent research on data-based process monitoring publication-title: Industrial Engineering Chemistry Research. – reference: . Miami Beach, November 1999, Paper No, 232(c). – start-page: 169 year: 1997 end-page: 179 ident: bib12 article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction – reference: . Tahoe, 7–12 January 1996, pp. 275-279 – volume: 12 start-page: 0745 year: 2004 ident: 10.1016/j.conengprac.2016.02.010_bib6 article-title: Synthesis of T2 and Q statistics for process monitoring publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2003.08.004 – volume: 2005 start-page: 1 issue: 76 year: 2005 ident: 10.1016/j.conengprac.2016.02.010_bib7 article-title: Nonlinear process monitoring using JITL-PCA publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2004.08.003 – volume: 96 start-page: 132 year: 2009 ident: 10.1016/j.conengprac.2016.02.010_bib26 article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2009.01.002 – volume: 22 start-page: 503 issue: 4 year: 1998 ident: 10.1016/j.conengprac.2016.02.010_bib31 article-title: Recursive PLS algorithms for adaptive data modelling publication-title: Computers and Chemical Engineering doi: 10.1016/S0098-1354(97)00262-7 – volume: 11 start-page: 661 year: 2001 ident: 10.1016/j.conengprac.2016.02.010_bib43 article-title: Consistent dynamic PCA based on errors-in-variables subspace identification publication-title: Journal of Process Control doi: 10.1016/S0959-1524(00)00041-X – volume: 2 start-page: 559 year: 1901 ident: 10.1016/j.conengprac.2016.02.010_bib30 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine. Series B doi: 10.1080/14786440109462720 – volume: 23 start-page: 149 year: 1994 ident: 10.1016/j.conengprac.2016.02.010_bib45 article-title: Exponentially weighted moving principal component analysis and projection to latent structures publication-title: Chemometrics and Intelligent Laboratory systems doi: 10.1016/0169-7439(93)E0075-F – start-page: 11 year: 1947 ident: 10.1016/j.conengprac.2016.02.010_bib16 article-title: Multivariate quality control-illustrated by air testing of sample bombsights – volume: 59 start-page: 5897 year: 2004 ident: 10.1016/j.conengprac.2016.02.010_bib10 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2004.07.019 – volume: 21 start-page: 341 year: 1979 ident: 10.1016/j.conengprac.2016.02.010_bib19 article-title: Control procedures for residuals associated with principal component analysis publication-title: Technometrics doi: 10.1080/00401706.1979.10489779 – volume: 24 start-page: 423 year: 2000 ident: 10.1016/j.conengprac.2016.02.010_bib25 article-title: Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis publication-title: Computer and Chemical Engineering doi: 10.1016/S0098-1354(00)00433-6 – volume: 10 start-page: 471 year: 2000 ident: 10.1016/j.conengprac.2016.02.010_bib42 article-title: Recursive PCA for adaptive process monitoring publication-title: Journal of Process Control doi: 10.1016/S0959-1524(00)00022-6 – volume: 11 start-page: 613 year: 2003 ident: 10.1016/j.conengprac.2016.02.010_bib501 article-title: Recursive partial least squares algorithms for monitoring complex industrial processes publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(02)00096-5 – volume: 31 start-page: 31 issue: 1 year: 1978 ident: 10.1016/j.conengprac.2016.02.010_bib4 article-title: Rank-one modification of the symmetric eigenproblem publication-title: Numerische Mathematik doi: 10.1007/BF01396012 – volume: 102 start-page: 53 year: 2010 ident: 10.1016/j.conengprac.2016.02.010_bib15 article-title: Maximum-likelihood mixture factor analysis model and its application for process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2010.04.002 – volume: 54 start-page: 1811 year: 2008 ident: 10.1016/j.conengprac.2016.02.010_bib47 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AIChE J doi: 10.1002/aic.11515 – ident: 10.1016/j.conengprac.2016.02.010_bib2 – volume: 41 start-page: 475 year: 2010 ident: 10.1016/j.conengprac.2016.02.010_bib20 article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2010.03.015 – volume: 50 start-page: 287 year: 2011 ident: 10.1016/j.conengprac.2016.02.010_bib1 article-title: Variance sensitive adaptive threshold-based PCA method for fault detection and diagnosis publication-title: ISA Transactions doi: 10.1016/j.isatra.2010.12.004 – volume: 24 start-page: 1013 year: 2000 ident: 10.1016/j.conengprac.2016.02.010_bib22 article-title: A new multivariate statistical process monitoring method using principal component analysis publication-title: Computer and Chemical Engineering – volume: 44 start-page: 5691 year: 2005 ident: 10.1016/j.conengprac.2016.02.010_bib41 article-title: Process Monitoring Approach Using Fast Moving Window PCA publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie048873f – volume: 44 start-page: 2316 year: 2005 ident: 10.1016/j.conengprac.2016.02.010_bib9 article-title: Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie049081o – volume: 28 start-page: 1157 year: 2004 ident: 10.1016/j.conengprac.2016.02.010_bib21 article-title: Evolution of multivariate statistical process control: application of independent component analysis and external analysis publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2003.09.011 – ident: 10.1016/j.conengprac.2016.02.010_bib39 – ident: 10.1016/j.conengprac.2016.02.010_bib13 doi: 10.1016/S1474-6670(17)43143-0 – volume: 61 start-page: 85 year: 1997 ident: 10.1016/j.conengprac.2016.02.010_bib18 article-title: Asymptotic null and nonnull distribution of Hotelling’s T2-statistic under the elliptical distribution publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(96)00153-X – volume: 53 start-page: 2653 year: 2009 ident: 10.1016/j.conengprac.2016.02.010_bib27 article-title: EWMA chart for monitoring the process standard deviation when parameters are estimated publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2009.01.004 – ident: 10.1016/j.conengprac.2016.02.010_bib34 – year: 2000 ident: 10.1016/j.conengprac.2016.02.010_bib38 – ident: 10.1016/j.conengprac.2016.02.010_bib11 – volume: 17 start-page: 480 issue: 8-9 year: 2003 ident: 10.1016/j.conengprac.2016.02.010_bib33 article-title: Statistical process monitoring: Basics and beyond publication-title: J Chemon doi: 10.1002/cem.800 – year: 2013 ident: 10.1016/j.conengprac.2016.02.010_bib48 article-title: Review of recent research on data-based process monitoring publication-title: Industrial Engineering Chemistry Research. – volume: 27 start-page: 327 year: 2003 ident: 10.1016/j.conengprac.2016.02.010_bib40 article-title: A review of process fault detection and diagnosis Part III: Process history based methods publication-title: Computers and Chemical Engineering doi: 10.1016/S0098-1354(02)00162-X – volume: 1999 start-page: 891 issue: 7 year: 1999 ident: 10.1016/j.conengprac.2016.02.010_bib17 article-title: Real-time monitoring for a process with multiple operating modes publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(99)00038-6 – volume: 12 start-page: 277 year: 2002 ident: 10.1016/j.conengprac.2016.02.010_bib5 article-title: Dynamic process fault monitoring based on neural network and PCA publication-title: Journal of Process Control doi: 10.1016/S0959-1524(01)00027-0 – volume: 99 start-page: 432 year: 1986 ident: 10.1016/j.conengprac.2016.02.010_bib49 article-title: Comparison of five rules for determining the number of components to retain publication-title: Psychol Bull doi: 10.1037/0033-2909.99.3.432 – volume: 2008 start-page: 1427 issue: 16 year: 2008 ident: 10.1016/j.conengprac.2016.02.010_bib14 article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2008.04.004 – volume: 30 start-page: 179 year: 1995 ident: 10.1016/j.conengprac.2016.02.010_bib23 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(95)00076-3 – volume: 36 start-page: 12332 year: 2009 ident: 10.1016/j.conengprac.2016.02.010_bib8 article-title: A hybrid approach based on Hotelling statistics for automated visual inspection of display blemishes in LCD panels publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.04.066 – volume: 20 start-page: 957 year: 2010 ident: 10.1016/j.conengprac.2016.02.010_bib29 article-title: Recursive identification algorithms to design fault detection systems publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2010.06.018 – volume: 59 start-page: 2995 year: 2004 ident: 10.1016/j.conengprac.2016.02.010_bib24 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2004.04.031 – volume: 22 start-page: 503 year: 1998 ident: 10.1016/j.conengprac.2016.02.010_bib32 article-title: Recursive PLS algorithms for adaptive data monitoring publication-title: Computers and Chemical Engineering doi: 10.1016/S0098-1354(97)00262-7 – volume: 125 start-page: 101 year: 2013 ident: 10.1016/j.conengprac.2016.02.010_bib35 article-title: Fault detection in the Tennessee Eastman benchmark process using dynamic principal component analysis based on decorrelated residuals (DPCA-DR) publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2013.04.002 – volume: 72 start-page: 78 year: 2012 ident: 10.1016/j.conengprac.2016.02.010_bib46 article-title: Dynamic processes monitoring using kernel principal component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2011.12.026 – volume: 3 start-page: 403 issue: 3 year: 1995 ident: 10.1016/j.conengprac.2016.02.010_bib28 article-title: Statistical process control of multivariate processes publication-title: Control Engineering Practice doi: 10.1016/0967-0661(95)00014-L – ident: 10.1016/j.conengprac.2016.02.010_bib36 – volume: 51 start-page: 81 year: 2000 ident: 10.1016/j.conengprac.2016.02.010_bib37 article-title: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(00)00058-7 – volume: 7 start-page: 169 year: 1997 ident: 10.1016/j.conengprac.2016.02.010_bib12 article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction publication-title: Journal of Process Control doi: 10.1016/S0959-1524(97)80001-7 |
| SSID | ssj0016991 |
| Score | 2.4468775 |
| Snippet | A novel weighted adaptive recursive fault detection technique based on Principal Component Analysis (PCA) is proposed to address the issue of the increment in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 69 |
| SubjectTerms | Algorithms Complexity Computation Delay Eigenvalue Eigenvalues Eigenvector False alarm False alarms Fault detection PCA Recursive Recursivity Time-drifting Warp |
| Title | An improved weighted recursive PCA algorithm for adaptive fault detection |
| URI | https://dx.doi.org/10.1016/j.conengprac.2016.02.010 https://www.proquest.com/docview/1816018244 |
| Volume | 50 |
| WOSCitedRecordID | wos000374612600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbg_tofRJty9U6C24-Clb9GTClk3bXQLdQm5GkeVuQqqErGOWve__7owl2WnZQkrpxQQbxWLm82g0-vSJkHey4kKwUnql4MzDE409IXnkQXIRKhGHVVW1kvlf0rOzbDrlk8Hgxu2FaZap1tnVFV__V1fDPXA2bp39C3d3fwo34Dc4Ha7gdrju5fhc49bHzapBYnlb-FS4Q0ViWaBRw8koH4rl99VmXl_8MBzKUqyN-rfYLuthqeqWnqV389aRZbSrXr6w22DVRVfI5LUp7Y2bHnSnOLDZQvVnGIa7B5O5vjZr_ieAQ2kIYW21R-jF1hRmT8E5q93KRMB6HqApl7ktMz0_qa07MuTbGQX298pE3SyNPMaNqpELy0aP1sZVc5yLG6GjW2O_KUMswHUajIE2QOYeayVZLXX2V2Xtr9gX7EqAumOQx94hhyHMnyA4Hubj4-mnbjmKcXP0ouu7pYQZouDt7_tTnvPbiN-mMecPyQM7_6C5wc0jMlD6Mbm_o0r5hIxzTR2CqEMQ7RBEAUG0QxAFBFGHINoiiHYIekq-fTw-H5149sQNT0ZJUHuoFBRwGcazpGJhmIaZ5L7kMZ7OwsvEZ5lQVRrB9ytYBk0wQSzDWaASJiBRl9EzcqDBHM8JjapIzvzKF9geZnCCCZWqKMGMNeAZOyKps08hrRw9noqyLBzvcFH0li3QsoUfFmDZIxJ0LddGkmWPNh-cCwqbWpqUsQD07NH6rfNaAdEXl9SEVqvtZQH5MfNhih7HL_7pDS_Jvf4LekUO6s1WvSZ3ZVPPLzdvLBx_AnOPsSo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+weighted+recursive+PCA+algorithm+for+adaptive+fault+detection&rft.jtitle=Control+engineering+practice&rft.au=Portnoy%2C+Ivan&rft.au=Melendez%2C+Kevin&rft.au=Pinzon%2C+Horacio&rft.au=Sanjuan%2C+Marco&rft.date=2016-05-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=50&rft.spage=69&rft.epage=83&rft_id=info:doi/10.1016%2Fj.conengprac.2016.02.010&rft.externalDocID=S0967066116300326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |