KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D

For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust intelligent systems such as self-driving ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 3; s. 3292 - 3310
Hlavní autori: Liao, Yiyi, Xie, Jun, Geiger, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust intelligent systems such as self-driving cars requires a concerted effort across the different fields. This motivated us to develop KITTI-360, successor of the popular KITTI dataset. KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization to facilitate research at the intersection of vision, graphics and robotics. For efficient annotation, we created a tool to label 3D scenes with bounding primitives and developed a model that transfers this information into the 2D image domain, resulting in over 150k images and 1B 3D points with coherent semantic instance annotations across 2D and 3D. Moreover, we established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset, e.g., semantic scene understanding, novel view synthesis and semantic SLAM. KITTI-360 will enable progress at the intersection of these research areas and thus contribute towards solving one of today's grand challenges: the development of fully autonomous self-driving systems.
AbstractList For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust intelligent systems such as self-driving cars requires a concerted effort across the different fields. This motivated us to develop KITTI-360, successor of the popular KITTI dataset. KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization to facilitate research at the intersection of vision, graphics and robotics. For efficient annotation, we created a tool to label 3D scenes with bounding primitives and developed a model that transfers this information into the 2D image domain, resulting in over 150k images and 1B 3D points with coherent semantic instance annotations across 2D and 3D. Moreover, we established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset, e.g., semantic scene understanding, novel view synthesis and semantic SLAM. KITTI-360 will enable progress at the intersection of these research areas and thus contribute towards solving one of today's grand challenges: the development of fully autonomous self-driving systems.
For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust intelligent systems such as self-driving cars requires a concerted effort across the different fields. This motivated us to develop KITTI-360, successor of the popular KITTI dataset. KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization to facilitate research at the intersection of vision, graphics and robotics. For efficient annotation, we created a tool to label 3D scenes with bounding primitives and developed a model that transfers this information into the 2D image domain, resulting in over 150k images and 1B 3D points with coherent semantic instance annotations across 2D and 3D. Moreover, we established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset, e.g., semantic scene understanding, novel view synthesis and semantic SLAM. KITTI-360 will enable progress at the intersection of these research areas and thus contribute towards solving one of today's grand challenges: the development of fully autonomous self-driving systems.For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust intelligent systems such as self-driving cars requires a concerted effort across the different fields. This motivated us to develop KITTI-360, successor of the popular KITTI dataset. KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization to facilitate research at the intersection of vision, graphics and robotics. For efficient annotation, we created a tool to label 3D scenes with bounding primitives and developed a model that transfers this information into the 2D image domain, resulting in over 150k images and 1B 3D points with coherent semantic instance annotations across 2D and 3D. Moreover, we established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset, e.g., semantic scene understanding, novel view synthesis and semantic SLAM. KITTI-360 will enable progress at the intersection of these research areas and thus contribute towards solving one of today's grand challenges: the development of fully autonomous self-driving systems.
Author Liao, Yiyi
Xie, Jun
Geiger, Andreas
Author_xml – sequence: 1
  givenname: Yiyi
  orcidid: 0000-0001-6662-3022
  surname: Liao
  fullname: Liao, Yiyi
  email: yiyi.liao@tue.mpg.de
  organization: Autonomous Vision Group, University of Tübingen and Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 2
  givenname: Jun
  surname: Xie
  fullname: Xie, Jun
  email: junx@google.com
  organization: Google Research, Mountain View, CA, USA
– sequence: 3
  givenname: Andreas
  surname: Geiger
  fullname: Geiger, Andreas
  email: a.geiger@uni-tuebingen.de
  organization: Autonomous Vision Group, University of Tübingen and Max Planck Institute for Intelligent Systems, Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35648872$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEURi1EBYHyB0CqLHXTzQT7evyY7lLSR1QoSEzWlmPfgaETD7UnlfrvO5CUBYuu7uac-_qOyH7sIxJyytmUc1ad1zezq8UUGMBUcF1JpvfIBLhiRQUV7JMJ4woKY8AckqOcHxjjpWTigBwKqUpjNExI_X1R14tCKPaRzuiP_jd2dO4Gl3GgLgb6CaO_X7v0M9OmT3SZVi7SW48R6TIGTHkYqTbe0TZSmD8rYv6WvGlcl_FkV4_J8svn-uJbcXn9dXExuyy8kHwoStaAAb9yCjwYFxADC8IzDk47sRIiGBnAVVC6IEMYGckC-qCkbqpGcXFMPmz7Pqb-1wbzYNdt9th1LmK_yRaUBs0UMzCi71-hD_0mxXE7C1qLUkpRliP1bkdtVmsM9jG14-1_7L9_jQBsAZ_6nBM2Lwhn9ikU-xyKfQrF7kIZJfNK8u3ghraPQ3Jt93_1bKu2iPgyq9JGKa3EXxHJlfo
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_electronics14173429
crossref_primary_10_1109_LRA_2023_3325689
crossref_primary_10_1109_LRA_2024_3495584
crossref_primary_10_1007_s00371_024_03663_1
crossref_primary_10_1109_TGRS_2025_3591180
crossref_primary_10_3390_jsan14010015
crossref_primary_10_1109_TIM_2025_3584116
crossref_primary_10_1049_ipr2_12846
crossref_primary_10_1109_LRA_2023_3290526
crossref_primary_10_1109_TITS_2023_3241212
crossref_primary_10_1016_j_iswa_2025_200561
crossref_primary_10_1109_LRA_2024_3444671
crossref_primary_10_1109_TIM_2024_3406840
crossref_primary_10_1016_j_neunet_2025_107503
crossref_primary_10_1109_TITS_2024_3393125
crossref_primary_10_1109_TITS_2022_3210409
crossref_primary_10_3390_s24123878
crossref_primary_10_1109_TRO_2025_3526084
crossref_primary_10_1016_j_inffus_2024_102644
crossref_primary_10_1109_TAI_2024_3477425
crossref_primary_10_1007_s11263_024_02089_5
crossref_primary_10_1016_j_isprsjprs_2025_01_024
crossref_primary_10_1016_j_autcon_2024_105795
crossref_primary_10_1109_TFR_2025_3566694
crossref_primary_10_3390_jmse11061141
crossref_primary_10_1109_TITS_2023_3257086
crossref_primary_10_3390_app15148089
crossref_primary_10_1007_s11263_023_01790_1
crossref_primary_10_1109_ACCESS_2023_3246260
crossref_primary_10_1109_LRA_2025_3542695
crossref_primary_10_1109_TCSVT_2025_3551719
crossref_primary_10_1109_LRA_2025_3568306
crossref_primary_10_1109_TRO_2024_3400831
crossref_primary_10_3103_S1060992X24700711
crossref_primary_10_1109_TITS_2024_3439557
crossref_primary_10_3389_fcomp_2025_1561899
crossref_primary_10_1109_TIM_2024_3403194
crossref_primary_10_1109_JSEN_2023_3306377
crossref_primary_10_1109_TASE_2025_3588584
crossref_primary_10_1109_TIV_2023_3336940
crossref_primary_10_1109_LRA_2024_3460418
crossref_primary_10_1145_3728302
crossref_primary_10_1016_j_aei_2024_103036
crossref_primary_10_1109_OJVT_2025_3541891
crossref_primary_10_1016_j_patcog_2025_111801
crossref_primary_10_1080_10630732_2025_2468142
crossref_primary_10_1115_1_4069346
crossref_primary_10_3390_s24123863
crossref_primary_10_1109_LRA_2024_3440098
crossref_primary_10_1109_TRO_2025_3543302
crossref_primary_10_1007_s00138_023_01400_7
crossref_primary_10_1145_3707446
crossref_primary_10_3390_app14188150
crossref_primary_10_1109_TIV_2024_3394735
crossref_primary_10_1080_01691864_2022_2153080
crossref_primary_10_1109_TIP_2025_3597047
crossref_primary_10_1109_TIV_2024_3461651
crossref_primary_10_1109_LRA_2024_3400156
crossref_primary_10_1109_ACCESS_2023_3301119
crossref_primary_10_1109_LRA_2024_3393209
crossref_primary_10_1109_LRA_2023_3287791
crossref_primary_10_3390_data10010005
crossref_primary_10_1109_TIV_2024_3418497
crossref_primary_10_3390_math12132027
crossref_primary_10_1109_ACCESS_2023_3295212
crossref_primary_10_1109_TPAMI_2024_3408642
crossref_primary_10_1007_s00371_024_03321_6
crossref_primary_10_1109_ACCESS_2025_3539598
crossref_primary_10_1109_LRA_2022_3189425
crossref_primary_10_1111_cgf_15012
crossref_primary_10_1109_ACCESS_2025_3525805
crossref_primary_10_1109_LRA_2024_3495455
crossref_primary_10_1145_3715916
crossref_primary_10_1109_TIV_2024_3395653
crossref_primary_10_20965_jrm_2023_p1450
crossref_primary_10_1016_j_scs_2025_106384
crossref_primary_10_3389_fimag_2024_1387543
crossref_primary_10_1109_TPAMI_2025_3581608
crossref_primary_10_1007_s44163_025_00455_x
crossref_primary_10_1109_LRA_2024_3357315
crossref_primary_10_1109_TPAMI_2024_3400402
crossref_primary_10_3390_rs16213984
crossref_primary_10_3390_s24020536
crossref_primary_10_3390_s25123602
crossref_primary_10_1177_02783649251344967
crossref_primary_10_1016_j_inffus_2024_102671
crossref_primary_10_1016_j_isprsjprs_2024_04_023
crossref_primary_10_1109_LRA_2022_3188106
crossref_primary_10_1111_cgf_70111
crossref_primary_10_1109_LRA_2024_3524907
crossref_primary_10_3390_machines11020126
crossref_primary_10_1007_s11263_024_02019_5
crossref_primary_10_1109_TCSVT_2024_3432510
crossref_primary_10_1109_TVCG_2025_3540669
crossref_primary_10_1109_TCSVT_2025_3527235
crossref_primary_10_3390_s24124011
crossref_primary_10_1109_LRA_2022_3223555
crossref_primary_10_3390_electronics12030703
crossref_primary_10_1016_j_engappai_2025_110024
crossref_primary_10_1109_TCI_2024_3380363
crossref_primary_10_1016_j_engappai_2024_109685
crossref_primary_10_3390_electronics14071447
crossref_primary_10_1109_TITS_2023_3268578
crossref_primary_10_1109_TII_2022_3189177
crossref_primary_10_1109_TIM_2024_3375408
crossref_primary_10_3390_s23249866
crossref_primary_10_1088_1361_6501_ad147a
crossref_primary_10_1109_TRO_2025_3550771
crossref_primary_10_1109_TIV_2024_3423392
crossref_primary_10_1007_s41095_023_0358_0
crossref_primary_10_1016_j_aej_2025_02_063
crossref_primary_10_1007_s11227_025_07066_4
crossref_primary_10_1109_TIV_2024_3367919
crossref_primary_10_1109_JSTARS_2025_3552105
crossref_primary_10_1109_TCOMM_2024_3420708
crossref_primary_10_1111_mice_13417
crossref_primary_10_1016_j_inffus_2025_103351
crossref_primary_10_7746_jkros_2025_20_3_456
crossref_primary_10_1109_JIOT_2024_3475390
crossref_primary_10_3390_wevj15030085
crossref_primary_10_1109_TITS_2025_3558257
crossref_primary_10_3390_s24144676
crossref_primary_10_1109_TITS_2024_3388276
crossref_primary_10_3390_rs17020298
crossref_primary_10_3390_su15086750
crossref_primary_10_3390_s24072314
crossref_primary_10_1109_TMECH_2024_3454075
crossref_primary_10_1109_LRA_2024_3362681
crossref_primary_10_3390_s24175798
crossref_primary_10_1109_LRA_2023_3255560
crossref_primary_10_1109_JSTARS_2025_3590351
crossref_primary_10_1109_TRO_2024_3386363
crossref_primary_10_1007_s10462_024_10741_2
crossref_primary_10_3390_s23177633
crossref_primary_10_1038_s41597_025_04457_3
crossref_primary_10_1109_TII_2025_3534400
crossref_primary_10_1109_TIV_2024_3360273
crossref_primary_10_1109_TVT_2022_3183202
crossref_primary_10_1109_TITS_2024_3456293
crossref_primary_10_1109_TPAMI_2023_3262817
crossref_primary_10_1117_1_JRS_18_046507
crossref_primary_10_1109_TITS_2023_3300537
crossref_primary_10_1016_j_cag_2024_104014
crossref_primary_10_1109_LRA_2024_3356793
crossref_primary_10_3389_fcomp_2025_1467103
crossref_primary_10_1109_LRA_2023_3300281
crossref_primary_10_1109_TIM_2023_3315358
crossref_primary_10_1109_TITS_2025_3525542
crossref_primary_10_1016_j_cag_2025_104293
crossref_primary_10_1109_JSEN_2025_3562284
crossref_primary_10_1016_j_knosys_2025_114321
crossref_primary_10_1080_17538947_2025_2478584
crossref_primary_10_1109_TITS_2024_3374342
crossref_primary_10_1016_j_inffus_2025_103015
crossref_primary_10_1177_02783649251316881
crossref_primary_10_1016_j_cagd_2025_102453
crossref_primary_10_1016_j_robot_2024_104900
crossref_primary_10_1145_3687762
crossref_primary_10_3390_f15091559
crossref_primary_10_3390_s24216790
crossref_primary_10_1177_02783649241278369
crossref_primary_10_1007_s10791_025_09646_7
crossref_primary_10_1109_TASE_2024_3394519
crossref_primary_10_1109_LRA_2022_3229224
crossref_primary_10_1109_LRA_2025_3536206
crossref_primary_10_1016_j_ifacol_2025_07_009
crossref_primary_10_1109_TPAMI_2025_3549711
crossref_primary_10_3390_agronomy15010242
crossref_primary_10_3390_s23218981
crossref_primary_10_1109_ACCESS_2024_3469550
crossref_primary_10_1109_LRA_2024_3419648
crossref_primary_10_1109_TNNLS_2024_3495045
crossref_primary_10_7717_peerj_cs_2656
crossref_primary_10_1109_LRA_2023_3290516
crossref_primary_10_3390_s24020699
crossref_primary_10_1109_LRA_2023_3333742
crossref_primary_10_1109_LRA_2025_3592057
crossref_primary_10_1109_TRO_2025_3530273
crossref_primary_10_1007_s00530_023_01185_9
crossref_primary_10_1109_ACCESS_2025_3566472
crossref_primary_10_1109_TGRS_2024_3389949
crossref_primary_10_1155_2023_3895703
Cites_doi 10.1109/CVPR.2019.00976
10.1109/CVPR.2018.00096
10.1109/2945.817351
10.1109/CVPR.2018.00068
10.1109/IROS.2018.8593828
10.1109/CVPR.2017.261
10.1109/TRO.2019.2909168
10.5194/isprs-annals-iv-1-w1-91-2017
10.1007/978-3-642-33715-4_36
10.1109/TPAMI.2011.131
10.1109/ICCV.2019.00939
10.1109/IROS.2014.6942637
10.1111/cgf.14339
10.1007/978-3-319-10602-1_34
10.1109/ICCV.2019.00937
10.1109/CVPR.2016.352
10.1109/CVPR.2017.592
10.1109/TPAMI.2004.60
10.1007/978-3-319-10602-1_22
10.1109/CVPR.2015.7298655
10.1109/LRA.2018.2866205
10.1109/CVPR.2013.269
10.1109/CVPR.2019.00902
10.1007/978-3-642-32717-9_3
10.1109/ICRA.2014.6907507
10.1109/CVPR.2016.401
10.1109/ICRA.2012.6225003
10.1007/s11263-014-0713-9
10.5555/3001460.3001507
10.1109/CVPR42600.2020.01164
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.441
10.5244/C.24.27
10.1109/CVPR.2019.00540
10.1109/CVPR46437.2021.00548
10.1109/IROS.2017.8206371
10.1109/ICCV.2009.5459249
10.1145/3072959.3073599
10.1109/CVPR46437.2021.00399
10.1109/ICRA40945.2020.9197385
10.1109/CVPRW50498.2020.00109
10.1109/CVPR46437.2021.01129
10.1109/TPAMI.2019.2926463
10.1109/CVPR.2016.470
10.1109/34.88573
10.1109/CVPR42600.2020.01224
10.1109/IROS.2013.6696592
10.1109/CVPR.2019.00895
10.1007/978-3-319-10593-2_43
10.1109/CVPR.2011.5995693
10.1109/CVPRW.2019.00172
10.1109/CVPR.2010.5540054
10.1561/0600000079
10.1109/CVPR.2017.477
10.1109/ICCVW.2017.36
10.1109/CVPR42600.2020.00492
10.1109/CVPR.2014.409
10.1007/978-3-030-58452-8_24
10.1145/3240508.3241916
10.1109/LRA.2019.2923954
10.1109/CVPR.2012.6248074
10.1007/978-3-030-58529-7_37
10.1109/LRA.2018.2852782
10.1109/CVPR.2015.7299075
10.1109/CVPR.2015.7298965
10.1007/978-3-642-15549-9_32
10.1109/CVPR42600.2020.01113
10.1109/CVPR.2019.00906
10.1109/ICCV.2017.534
10.1109/ICCV.2019.00940
10.1109/CVPR.2016.350
10.1109/CVPR42600.2020.00252
10.1109/TRO.2017.2705103
10.1109/CVPR46437.2021.00288
10.1109/ICRA.2018.8460952
10.1007/978-3-319-46475-6_7
10.1109/WACV.2015.139
10.1177/0278364913491297
10.1109/cvpr52688.2022.01254
10.1109/CVPR46437.2021.00715
10.1109/CVPRW.2018.00272
10.1109/CVPR.2018.00780
10.1109/CVPR46437.2021.00607
10.1007/978-3-642-40395-8_14
10.1109/ICRA40945.2020.9196885
10.1145/345370.345398
10.1007/s11263-013-0673-5
10.1109/CVPR.2017.272
10.1007/978-3-319-24947-6_15
10.1109/CVPR.2017.660
10.1007/s10514-012-9321-0
10.1109/CVPR42600.2020.00591
10.1109/TPAMI.2007.1166
10.1109/TPAMI.2018.2844175
10.1016/j.patrec.2008.04.005
10.1109/ICCV.2017.477
10.1109/ICCV.2013.458
10.1109/3DV.2017.00081
10.1109/ICCV.2013.379
10.1109/CVPR42600.2020.00988
10.1109/ICCV48922.2021.00580
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3179507
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 3310
ExternalDocumentID 35648872
10_1109_TPAMI_2022_3179507
9786676
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ERC
  grantid: LEGO-3D 850533
– fundername: German Federal Ministry of Education and Research
  grantid: 01IS18039A
– fundername: DFG EXC
  grantid: 390727645
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-40f282cba62c28adeed0d3c012a7a3b33d85d2a924ad5ddc2850decd657f9f613
IEDL.DBID RIE
ISICitedReferencesCount 333
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966831200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 19:47:06 EDT 2025
Mon Jun 30 06:20:06 EDT 2025
Wed Feb 19 02:24:39 EST 2025
Sat Nov 29 02:58:20 EST 2025
Tue Nov 18 22:31:03 EST 2025
Wed Aug 27 02:03:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-40f282cba62c28adeed0d3c012a7a3b33d85d2a924ad5ddc2850decd657f9f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6662-3022
PMID 35648872
PQID 2773455344
PQPubID 85458
PageCount 19
ParticipantIDs crossref_primary_10_1109_TPAMI_2022_3179507
ieee_primary_9786676
proquest_miscellaneous_2672706082
pubmed_primary_35648872
proquest_journals_2773455344
crossref_citationtrail_10_1109_TPAMI_2022_3179507
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref54
Madhavan (ref62) 2017
Kesten (ref50) 2019
Winston (ref104) 1971
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
Geyer (ref36) 2020
ref8
ref7
ref9
Hoffman (ref43) 2016
ref4
ref3
Zeiler (ref113) 2012
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref31
ref30
ref33
ref32
Grupp (ref37) 2017
Krähenbühl (ref55)
Munoz (ref65)
Cabon (ref17) 2020
ref39
ref38
Zolanvari (ref119)
Roberts (ref85) 1963
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref13
ref12
Qi (ref78)
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref16
ref19
ref18
Dosovitskiy (ref29)
ref93
ref95
ref94
ref91
ref90
ref89
Qi (ref77)
ref86
ref88
ref87
Weber (ref103)
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref109
ref106
ref107
ref75
ref74
ref105
ref102
ref76
ref2
ref71
ref111
ref70
ref112
ref72
ref110
ref68
ref67
Seitz (ref92) 1999; 33
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref114
Osborne (ref73) 2008
ref60
ref61
References_xml – ident: ref56
  doi: 10.1109/CVPR.2019.00976
– year: 2008
  ident: ref73
  article-title: The mercator projections
– ident: ref2
  doi: 10.1109/CVPR.2018.00096
– ident: ref10
  doi: 10.1109/2945.817351
– ident: ref115
  doi: 10.1109/CVPR.2018.00068
– ident: ref12
  doi: 10.1109/IROS.2018.8593828
– ident: ref26
  doi: 10.1109/CVPR.2017.261
– ident: ref109
  doi: 10.1109/TRO.2019.2909168
– ident: ref39
  doi: 10.5194/isprs-annals-iv-1-w1-91-2017
– year: 2017
  ident: ref62
  article-title: The BDD-Nexar collective: A large-scale, crowsourced, dataset of driving scenes
– ident: ref100
  doi: 10.1007/978-3-642-33715-4_36
– year: 2019
  ident: ref50
  article-title: Level 5 perception dataset 2020
– ident: ref60
  doi: 10.1109/TPAMI.2011.131
– ident: ref8
  doi: 10.1109/ICCV.2019.00939
– ident: ref90
  doi: 10.1109/IROS.2014.6942637
– ident: ref54
  doi: 10.1111/cgf.14339
– start-page: 77
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref77
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref84
  doi: 10.1007/978-3-319-10602-1_34
– ident: ref76
  doi: 10.1109/ICCV.2019.00937
– ident: ref86
  doi: 10.1109/CVPR.2016.352
– ident: ref67
  doi: 10.1109/CVPR.2017.592
– ident: ref11
  doi: 10.1109/TPAMI.2004.60
– ident: ref51
  doi: 10.1007/978-3-319-10602-1_22
– ident: ref93
  doi: 10.1109/CVPR.2015.7298655
– ident: ref71
  doi: 10.1109/LRA.2018.2866205
– ident: ref99
  doi: 10.1109/CVPR.2013.269
– start-page: 5105
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref78
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref108
  doi: 10.1109/CVPR.2019.00902
– year: 2016
  ident: ref43
  article-title: FCNs in the wild: Pixel-level adversarial and constraint-based adaptation
– ident: ref68
  doi: 10.1007/978-3-642-32717-9_3
– ident: ref91
  doi: 10.1109/ICRA.2014.6907507
– ident: ref107
  doi: 10.1109/CVPR.2016.401
– ident: ref9
  doi: 10.1109/ICRA.2012.6225003
– ident: ref38
  doi: 10.1007/s11263-014-0713-9
– ident: ref30
  doi: 10.5555/3001460.3001507
– start-page: 1
  volume-title: Proc. Conf. Robot Learn.
  ident: ref29
  article-title: CARLA: An open urban driving simulator
– ident: ref18
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref58
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref117
  doi: 10.1109/CVPR.2017.441
– ident: ref15
  doi: 10.5244/C.24.27
– ident: ref59
  doi: 10.1109/CVPR.2019.00540
– ident: ref4
  doi: 10.1109/CVPR46437.2021.00548
– ident: ref81
  doi: 10.1109/IROS.2017.8206371
– ident: ref106
  doi: 10.1109/ICCV.2009.5459249
– ident: ref53
  doi: 10.1145/3072959.3073599
– ident: ref80
  doi: 10.1109/CVPR46437.2021.00399
– year: 2012
  ident: ref113
  article-title: ADADELTA: An adaptive learning rate method
– ident: ref75
  doi: 10.1109/ICRA40945.2020.9197385
– ident: ref96
  doi: 10.1109/CVPRW50498.2020.00109
– ident: ref72
  doi: 10.1109/CVPR46437.2021.01129
– ident: ref45
  doi: 10.1109/TPAMI.2019.2926463
– ident: ref32
  doi: 10.1109/CVPR.2016.470
– ident: ref98
  doi: 10.1109/34.88573
– ident: ref112
  doi: 10.1109/CVPR42600.2020.01224
– ident: ref41
  doi: 10.1109/IROS.2013.6696592
– ident: ref21
  doi: 10.1109/CVPR.2019.00895
– ident: ref46
  doi: 10.1007/978-3-319-10593-2_43
– ident: ref48
  doi: 10.1109/CVPR.2011.5995693
– year: 2020
  ident: ref36
  article-title: A2D2: Audi autonomous driving dataset
– ident: ref23
  doi: 10.1109/CVPRW.2019.00172
– ident: ref6
  doi: 10.1109/CVPR.2010.5540054
– ident: ref47
  doi: 10.1561/0600000079
– ident: ref19
  doi: 10.1109/CVPR.2017.477
– ident: ref16
  doi: 10.1109/ICCVW.2017.36
– ident: ref49
  doi: 10.1109/CVPR42600.2020.00492
– ident: ref22
  doi: 10.1109/CVPR.2014.409
– ident: ref64
  doi: 10.1007/978-3-030-58452-8_24
– year: 2020
  ident: ref17
  article-title: Virtual KITTI 2
– start-page: 668
  volume-title: Proc. Eur. Conf. Comput. Vis.
  ident: ref65
  article-title: Co-inference machines for multi-modal scene analysis
– ident: ref3
  doi: 10.1145/3240508.3241916
– start-page: 109
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref55
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– ident: ref28
  doi: 10.1109/LRA.2019.2923954
– ident: ref34
  doi: 10.1109/CVPR.2012.6248074
– ident: ref83
  doi: 10.1007/978-3-030-58529-7_37
– ident: ref102
  doi: 10.1109/LRA.2018.2852782
– ident: ref63
  doi: 10.1109/CVPR.2015.7299075
– ident: ref61
  doi: 10.1109/CVPR.2015.7298965
– volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks
  ident: ref103
  article-title: STEP: Segmenting and tracking every pixel
– ident: ref95
  doi: 10.1007/978-3-642-15549-9_32
– year: 2017
  ident: ref37
  article-title: EVO: Python package for the evaluation of odometry and SLAM
– ident: ref110
  doi: 10.1109/CVPR42600.2020.01113
– ident: ref118
  doi: 10.1109/CVPR.2019.00906
– ident: ref70
  doi: 10.1109/ICCV.2017.534
– ident: ref111
  doi: 10.1109/ICCV.2019.00940
– ident: ref25
  doi: 10.1109/CVPR.2016.350
– year: 1971
  ident: ref104
  article-title: Heterarchy in the M.I.T. robot
– ident: ref94
  doi: 10.1109/CVPR42600.2020.00252
– ident: ref66
  doi: 10.1109/TRO.2017.2705103
– ident: ref74
  doi: 10.1109/CVPR46437.2021.00288
– ident: ref14
  doi: 10.1109/ICRA.2018.8460952
– ident: ref82
  doi: 10.1007/978-3-319-46475-6_7
– ident: ref69
  doi: 10.1109/WACV.2015.139
– volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref119
  article-title: DublinCity: Annotated LiDAR point cloud and its applications
– ident: ref33
  doi: 10.1177/0278364913491297
– ident: ref27
  doi: 10.1109/cvpr52688.2022.01254
– ident: ref24
  doi: 10.1109/CVPR46437.2021.00715
– ident: ref88
  doi: 10.1109/CVPRW.2018.00272
– ident: ref97
  doi: 10.1109/CVPR.2018.00780
– ident: ref79
  doi: 10.1109/CVPR46437.2021.00607
– year: 1963
  ident: ref85
  article-title: Machine perception of three-dimensional solids
– ident: ref101
  doi: 10.1007/978-3-642-40395-8_14
– ident: ref87
  doi: 10.1109/ICRA40945.2020.9196885
– volume: 33
  start-page: 35
  year: 1999
  ident: ref92
  article-title: Applications of computer vision to computer graphics
  publication-title: Comput. Graph.
  doi: 10.1145/345370.345398
– ident: ref5
  doi: 10.1007/s11263-013-0673-5
– ident: ref89
  doi: 10.1109/CVPR.2017.272
– ident: ref35
  doi: 10.1007/978-3-319-24947-6_15
– ident: ref116
  doi: 10.1109/CVPR.2017.660
– ident: ref44
  doi: 10.1007/s10514-012-9321-0
– ident: ref57
  doi: 10.1109/CVPR42600.2020.00591
– ident: ref42
  doi: 10.1109/TPAMI.2007.1166
– ident: ref40
  doi: 10.1109/TPAMI.2018.2844175
– ident: ref13
  doi: 10.1016/j.patrec.2008.04.005
– ident: ref31
  doi: 10.1109/ICCV.2017.477
– ident: ref105
  doi: 10.1109/ICCV.2013.458
– ident: ref20
  doi: 10.1109/3DV.2017.00081
– ident: ref114
  doi: 10.1109/ICCV.2013.379
– ident: ref52
  doi: 10.1109/CVPR42600.2020.00988
– ident: ref7
  doi: 10.1109/ICCV48922.2021.00580
SSID ssj0014503
Score 2.765353
Snippet For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3292
SubjectTerms Annotations
Artificial intelligence
Autonomous cars
Benchmark testing
Benchmarks
Cameras
Computer vision
Datasets
performance evaluation
Point cloud labeling
Robotics
Scene analysis
scene understanding
self-driving
semantic label transfer
Semantics
Task analysis
Three-dimensional displays
Title KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D
URI https://ieeexplore.ieee.org/document/9786676
https://www.ncbi.nlm.nih.gov/pubmed/35648872
https://www.proquest.com/docview/2773455344
https://www.proquest.com/docview/2672706082
Volume 45
WOSCitedRecordID wos000966831200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdtGaN9WLd2a7N1xYW-bdlycWwne7vtVnaMHn3Iwb0Fx3JYWZsrd7n-_ZWdD1rYBnsJgciOiaToJ8uSAM5LkWBJUDckWXJbN3TRVWTCSqYu6qVH3Ka-2YSazdLFIrvago9DLoy11h8-s5_crY_l49Js3FaZqwbrjmRuw7ZSqs3VGiIGifBdkAnBkIaTG9EnyETZ5_xqfDklVzCOyUNVGSGgXXjOhSTZVfETe-QbrPwda3qbc7H_f6t9CS86bMnGrTC8gi1bH8B-37eBdWp8AHuPihAeQv5zmufTkMvoCxuz2fLe3rCJbsi6NUzXyL7SoF-3evV7zQjgsvmq1DXNRf9INn-cGcOuaxZP_BA-eQ3zi-_5tx9h12shNFyMGnIjK3K-TKllbOJUI5nOCLkh86WV5iXnmAqMNXlrGgUi0YgIrUEpVJVVhAnewE69rO0xMII0ukKToURMtBK6zNKyEsaMJBJ-kgGM-i9emK4QueuHcVN4hyTKCs-wwjGs6BgWwIdhzF1bhuOf1IeOHQNlx4kATnrGFp2mrotYKZ4IwZMkgLPhMemYC5zo2i43ROPC1ZEktBTAUSsQw9y9HL398zvfwa5rUN-eWjuBnWa1se_hmblvrterUxLkRXrqBfkBDKXpSg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQGw8MNgGFAYEiTcotEmTtrwdHNNO20576El7q9I4FROjh-56-_tx0g8NCZB4qSrVSaParn-OYxvgbSUTrAjqhiRLbuuGLrqOTFirzEW9dCxs5ptNpPN5dnmZX2zB-zEXxlrrD5_ZD-7Wx_JxaTZuq8xVg3VHMu_AXZkkPO6ytcaYQSJ9H2TCMKTj5EgMKTJR_rG4mJzPyBnknHzUNCcMtAv3hVQkvSn_zSL5Fit_R5ve6hzv_d96H8HDHl2ySScOj2HLNvuwN3RuYL0i78ODW2UID6A4nRXFLBQq-sQmbL68sddsqluyby3TDbLPNOjbD736vmYEcdliVemG5qK_JFvczo1hVw3jUz9ETA9hcfy1-HIS9t0WQiNk3JIjWZP7ZSqtuOGZRjKeEQpDBkynWlRCYCaRa_LXNEpEopERWoNKpnVeEyp4AtvNsrHPgBGo0TWaHBViolOpqzyramlMrJAQlAogHr54afpS5K4jxnXpXZIoLz3DSsewsmdYAO_GMT-7Qhz_pD5w7Bgpe04EcDQwtux1dV3yNBWJlCJJAngzPiYtc6ET3djlhmhcwDpShJcCeNoJxDj3IEfP__zO17BzUpyflWez-ekL2HXt6rszbEew3a429iXcMzft1Xr1yovzL9fD66k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KITTI-360%3A+A+Novel+Dataset+and+Benchmarks+for+Urban+Scene+Understanding+in+2D+and+3D&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liao%2C+Yiyi&rft.au=Xie%2C+Jun&rft.au=Geiger%2C+Andreas&rft.date=2023-03-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=45&rft.issue=3&rft.spage=3292&rft.epage=3310&rft_id=info:doi/10.1109%2FTPAMI.2022.3179507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3179507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon