Maximum Block Energy Guided Robust Subspace Clustering
Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 2; s. 2652 - 2659 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists. |
|---|---|
| AbstractList | Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists. Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists.Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists. |
| Author | Shen, Liquan Zhang, Xinpeng Feng, Guorui Qin, Yalan |
| Author_xml | – sequence: 1 givenname: Yalan orcidid: 0000-0002-4479-5680 surname: Qin fullname: Qin, Yalan email: ylqin@shu.edu.cn organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China – sequence: 2 givenname: Xinpeng orcidid: 0000-0001-5867-1315 surname: Zhang fullname: Zhang, Xinpeng email: xzhang@shu.edu.cn organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China – sequence: 3 givenname: Liquan orcidid: 0000-0002-2148-6279 surname: Shen fullname: Shen, Liquan email: jsslq@shu.edu.cn organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China – sequence: 4 givenname: Guorui orcidid: 0000-0001-8249-2608 surname: Feng fullname: Feng, Guorui email: fgr2082@aliyun.com organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35452385$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctKxDAUQIMozvj4AQUpuHHTMblJ03Spg46CovhYhza5HaJ9jEkLzt9bnRkXLlyFhHMu4dw9st20DRJyxOiEMZqdvzxe3N9OgAJMOJNKKdgiY2CSxhlksE3GlEmIh2c1InshvFHKREL5LhnxRCTAVTIm8j7_dHVfR5dVa96jqwb9fBnNemfRRk9t0Ycueu6LsMgNRtNquKJ3zfyA7JR5FfBwfe6T1-url-lNfPcwu51e3MWGJ6yLBc3R8hIQDdIUVAaWS4ppacrEghBoKSuVKhOhmACjpDKmKEBak4GgtuT75Gw1d-Hbjx5Dp2sXDFZV3mDbBw0yEaCACjWgp3_Qt7b3zfA7DalkPBWZygbqZE31RY1WL7yrc7_UmyIDoFaA8W0IHkttXJd3rm06n7tKM6q_4-uf-Po7vl7HH1T4o26m_ysdrySHiL9ClkoYtse_AJA3jc8 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TIP_2025_3540297 crossref_primary_10_1016_j_eswa_2025_127767 crossref_primary_10_1109_TIP_2024_3459651 crossref_primary_10_1109_LSP_2023_3271828 crossref_primary_10_1016_j_patcog_2025_111949 crossref_primary_10_1109_TIP_2022_3226408 crossref_primary_10_3390_electronics12051249 crossref_primary_10_1109_TMM_2024_3521743 crossref_primary_10_1016_j_patcog_2024_111009 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_1109_TMM_2023_3331197 crossref_primary_10_1016_j_asoc_2024_112303 crossref_primary_10_1109_TFUZZ_2024_3435390 crossref_primary_10_1007_s13042_022_01712_6 crossref_primary_10_1145_3707646 crossref_primary_10_1007_s10044_024_01405_6 crossref_primary_10_1109_TKDE_2024_3523021 crossref_primary_10_1109_TNNLS_2025_3545435 crossref_primary_10_1007_s10994_025_06735_y crossref_primary_10_1016_j_neunet_2024_106842 crossref_primary_10_1109_TKDE_2024_3362984 |
| Cites_doi | 10.1609/aaai.v32i1.11712 10.1109/CVPR.2007.382974 10.1109/CVPR.2014.484 10.1109/34.291440 10.1109/CVPR.2013.62 10.1109/TPAMI.2014.2303095 10.1002/nav.3800020109 10.1007/s11263-008-0178-9 10.1023/A:1008000628999 10.1109/CVPR46437.2021.00119 10.1109/TPAMI.2012.63 10.1109/TIT.2019.2915593 10.1007/978-3-540-24673-2_32 10.1109/CVPR.2014.482 10.1109/CVPR.2009.5206547 10.1109/TCYB.2016.2536752 10.1109/CVPR46437.2021.01102 10.1109/CVPR.2015.7298624 10.1109/ICCV.2013.170 10.1007/978-3-642-23783-6_26 10.1109/34.927464 10.1109/TPAMI.2018.2794348 10.1609/aaai.v35i10.17037 10.1007/978-3-642-33786-4_26 10.1007/11744085_8 10.1109/TPAMI.2005.244 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2022.3168882 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2659 |
| ExternalDocumentID | 35452385 10_1109_TPAMI_2022_3168882 9762016 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072295; U1936214; 61931022 funderid: 10.13039/501100001809 – fundername: Science and Technology Planning Project of Zhejiang Province grantid: 2022C01090 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-40aed3f2eece072892d360e7fcf5d244ed01f88f548142c868ccbb26dc9240df3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912386000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 09:58:33 EDT 2025 Sun Jun 29 16:48:20 EDT 2025 Thu Apr 03 07:03:20 EDT 2025 Tue Nov 18 22:33:42 EST 2025 Sat Nov 29 02:58:19 EST 2025 Wed Aug 27 02:54:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-40aed3f2eece072892d360e7fcf5d244ed01f88f548142c868ccbb26dc9240df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4479-5680 0000-0001-8249-2608 0000-0002-2148-6279 0000-0001-5867-1315 |
| PMID | 35452385 |
| PQID | 2761374989 |
| PQPubID | 85458 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2022_3168882 crossref_primary_10_1109_TPAMI_2022_3168882 ieee_primary_9762016 proquest_miscellaneous_2654282048 pubmed_primary_35452385 proquest_journals_2761374989 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Costeira (ref4) 1998; 29 ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref23 Liu (ref7) ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref9 Lafferty (ref24) ref3 ref6 ref5 |
| References_xml | – ident: ref23 doi: 10.1609/aaai.v32i1.11712 – ident: ref1 doi: 10.1109/CVPR.2007.382974 – ident: ref28 doi: 10.1109/CVPR.2014.484 – ident: ref3 doi: 10.1109/34.291440 – start-page: 663 volume-title: Proc. 27th Int. Conf. Mach. Learn. ident: ref7 article-title: Robust subspace segmentation by low-rank representation – ident: ref19 doi: 10.1109/CVPR.2013.62 – ident: ref22 doi: 10.1109/TPAMI.2014.2303095 – ident: ref25 doi: 10.1002/nav.3800020109 – ident: ref13 doi: 10.1007/s11263-008-0178-9 – volume: 29 start-page: 108 issue: 3 year: 1998 ident: ref4 article-title: A multibody factorization method for independently moving objects publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008000628999 – ident: ref14 doi: 10.1109/CVPR46437.2021.00119 – ident: ref21 doi: 10.1109/TPAMI.2012.63 – ident: ref17 doi: 10.1109/TIT.2019.2915593 – ident: ref11 doi: 10.1007/978-3-540-24673-2_32 – ident: ref18 doi: 10.1109/CVPR.2014.482 – ident: ref6 doi: 10.1109/CVPR.2009.5206547 – ident: ref20 doi: 10.1109/TCYB.2016.2536752 – ident: ref15 doi: 10.1109/CVPR46437.2021.01102 – ident: ref26 doi: 10.1109/CVPR.2015.7298624 – ident: ref9 doi: 10.1109/ICCV.2013.170 – ident: ref10 doi: 10.1007/978-3-642-23783-6_26 – ident: ref2 doi: 10.1109/34.927464 – start-page: 282 volume-title: Proc. 18th Int. Conf. Mach. Learn. ident: ref24 article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data – ident: ref27 doi: 10.1109/TPAMI.2018.2794348 – ident: ref16 doi: 10.1609/aaai.v35i10.17037 – ident: ref8 doi: 10.1007/978-3-642-33786-4_26 – ident: ref12 doi: 10.1007/11744085_8 – ident: ref5 doi: 10.1109/TPAMI.2005.244 |
| SSID | ssj0014503 |
| Score | 2.532116 |
| Snippet | Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2652 |
| SubjectTerms | Clustering Clustering algorithms Columns (structural) Computer vision constrained homogenous function Data points Energy Errors Geometry iterative algorithm Iterative algorithms Iterative methods Least squares method Machine learning Machine learning algorithms maximum block energy Principal component analysis robust Subspace clustering Subspaces |
| Title | Maximum Block Energy Guided Robust Subspace Clustering |
| URI | https://ieeexplore.ieee.org/document/9762016 https://www.ncbi.nlm.nih.gov/pubmed/35452385 https://www.proquest.com/docview/2761374989 https://www.proquest.com/docview/2654282048 |
| Volume | 45 |
| WOSCitedRecordID | wos000912386000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BqhAcoIVSQikyEjcaSOys7RwpgrYHEEJU2lvk2GNpBexW7Kbqz2fsfIgDReotksdJ5JnJzIs98wCOuPF6hChSZRymheOY1qURqUZnhBGulLmLZBPq-lqPx-XNEnwdamEQMR4-w5NwGffy3cw24VfZKYVOildyGZaVkm2t1rBjUIwiCzINk4cTjOgLZLLy9O7m7OonQUHOTwJNE42uwaoI5NoiUCi_iEeRYOXfuWaMOZeb__e272Gjyy3ZWWsMH2AJp1uw2fM2sM6Nt2D9RRPCbZBX5u_ksXlk3yiu3bOLWAzIvjcTh47dzupmvmDh80LgGtn5QxM6K9DEj_Dr8uLu_EfasSmkVozyBQFFg054jmgxU4SzuBMyQ-WtHzkK8uiy3GvtCcLkBbdaamvrmktnCaJlzosdWJnOprgLzBeZrpWQkvsgmmsjPZe1x5Bu8sIkkPdrWtmu1XhgvHioIuTIyiqqpAoqqTqVJHA8zPndNtp4U3o7LPgg2a11Avu96qrOF-cVV5SyqKLUZQKHwzB5UdgaMVOcNSQTeLt0aGKcwKdW5cO9e0vZe_2Zn2EtUNC3J7n3YWXx1OAXeGf_LCbzpwMy1bE-iKb6DJBS4XQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4gGsEHUUAtoiyJb1pod9vt9hEJCIG7EHImvDXb3dnkItwZ7mr8853d_ggPYuJbk51tm5mdznzdnfkAPnHtVI4o4kJbjDPLMa5LLWKFVgstbClTG8gmivFY3dyUVyvwZaiFQcRw-AwP_GXYy7dz0_hfZYcUOileySfwNM8ynrTVWsOeQZYHHmQSIB8nINGXyCTl4eTqaHROYJDzA0_URKPr8Fx4em3hSZQfRKRAsfJ4thmizunG_73vK3jZZZfsqF0Or2EFZ5uw0TM3sM6RN-HFgzaEWyBH-vf0rrljXymy_WAnoRyQfWumFi27ntfNYsn8B4bgNbLj28b3VqCJ2_D99GRyfBZ3fAqxEXm6JKio0QrHEQ0mBSEtboVMsHDG5ZbCPNokdUo5AjFpxo2Sypi65tIaAmmJdeINrM7mM3wHzGWJqgshJXdeNFVaOi5rhz7h5JmOIO11Wpmu2bjnvLitAuhIyiqYpPImqTqTRPB5mPOzbbXxT-ktr_BBstN1BLu96arOGxcVLyhpKbJSlRHsD8PkR35zRM9w3pCMZ-5Svo1xBG9bkw_37lfKzt-fuQdrZ5PRZXV5Pr54D-uekL49170Lq8v7Bj_AM_NrOV3cfwwL9g8kg-PT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Block+Energy+Guided+Robust+Subspace+Clustering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Qin%2C+Yalan&rft.au=Zhang%2C+Xinpeng&rft.au=Shen%2C+Liquan&rft.au=Feng%2C+Guorui&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=45&rft.issue=2&rft.spage=2652&rft_id=info:doi/10.1109%2FTPAMI.2022.3168882&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |