Maximum Block Energy Guided Robust Subspace Clustering

Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 2; s. 2652 - 2659
Hlavní autoři: Qin, Yalan, Zhang, Xinpeng, Shen, Liquan, Feng, Guorui
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists.
AbstractList Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists.
Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists.Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which Sparse Subspace Clustering (SSC), Low-Rank Representation (LRR) and Least Squares Regression clustering (LSR) are three representative methods. These approaches achieve good results by assuming the structure of errors as a prior and removing errors in the original input space by modeling them in their objective functions. In this paper, we propose a novel method from an energy perspective to eliminate errors in the projected space rather than the input space. Since the block diagonal property can lead to correct clustering, we measure the correctness in terms of a block in the projected space with an energy function. A correct block corresponds to the subset of columns with the maximal energy. The energy of a block is defined based on the unary column, pairwise and high-order similarity of columns for each block. We relax the energy function of a block and approximate it by a constrained homogenous function. Moreover, we propose an efficient iterative algorithm to remove errors in the projected space. Both theoretical analysis and experiments show the superiority of our method over existing solutions to the clustering problem, especially when noise exists.
Author Shen, Liquan
Zhang, Xinpeng
Feng, Guorui
Qin, Yalan
Author_xml – sequence: 1
  givenname: Yalan
  orcidid: 0000-0002-4479-5680
  surname: Qin
  fullname: Qin, Yalan
  email: ylqin@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China
– sequence: 2
  givenname: Xinpeng
  orcidid: 0000-0001-5867-1315
  surname: Zhang
  fullname: Zhang, Xinpeng
  email: xzhang@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Liquan
  orcidid: 0000-0002-2148-6279
  surname: Shen
  fullname: Shen, Liquan
  email: jsslq@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China
– sequence: 4
  givenname: Guorui
  orcidid: 0000-0001-8249-2608
  surname: Feng
  fullname: Feng, Guorui
  email: fgr2082@aliyun.com
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35452385$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUQIMozvj4AQUpuHHTMblJ03Spg46CovhYhza5HaJ9jEkLzt9bnRkXLlyFhHMu4dw9st20DRJyxOiEMZqdvzxe3N9OgAJMOJNKKdgiY2CSxhlksE3GlEmIh2c1InshvFHKREL5LhnxRCTAVTIm8j7_dHVfR5dVa96jqwb9fBnNemfRRk9t0Ycueu6LsMgNRtNquKJ3zfyA7JR5FfBwfe6T1-url-lNfPcwu51e3MWGJ6yLBc3R8hIQDdIUVAaWS4ppacrEghBoKSuVKhOhmACjpDKmKEBak4GgtuT75Gw1d-Hbjx5Dp2sXDFZV3mDbBw0yEaCACjWgp3_Qt7b3zfA7DalkPBWZygbqZE31RY1WL7yrc7_UmyIDoFaA8W0IHkttXJd3rm06n7tKM6q_4-uf-Po7vl7HH1T4o26m_ysdrySHiL9ClkoYtse_AJA3jc8
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIP_2025_3540297
crossref_primary_10_1016_j_eswa_2025_127767
crossref_primary_10_1109_TIP_2024_3459651
crossref_primary_10_1109_LSP_2023_3271828
crossref_primary_10_1016_j_patcog_2025_111949
crossref_primary_10_1109_TIP_2022_3226408
crossref_primary_10_3390_electronics12051249
crossref_primary_10_1109_TMM_2024_3521743
crossref_primary_10_1016_j_patcog_2024_111009
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_1109_TMM_2023_3331197
crossref_primary_10_1016_j_asoc_2024_112303
crossref_primary_10_1109_TFUZZ_2024_3435390
crossref_primary_10_1007_s13042_022_01712_6
crossref_primary_10_1145_3707646
crossref_primary_10_1007_s10044_024_01405_6
crossref_primary_10_1109_TKDE_2024_3523021
crossref_primary_10_1109_TNNLS_2025_3545435
crossref_primary_10_1007_s10994_025_06735_y
crossref_primary_10_1016_j_neunet_2024_106842
crossref_primary_10_1109_TKDE_2024_3362984
Cites_doi 10.1609/aaai.v32i1.11712
10.1109/CVPR.2007.382974
10.1109/CVPR.2014.484
10.1109/34.291440
10.1109/CVPR.2013.62
10.1109/TPAMI.2014.2303095
10.1002/nav.3800020109
10.1007/s11263-008-0178-9
10.1023/A:1008000628999
10.1109/CVPR46437.2021.00119
10.1109/TPAMI.2012.63
10.1109/TIT.2019.2915593
10.1007/978-3-540-24673-2_32
10.1109/CVPR.2014.482
10.1109/CVPR.2009.5206547
10.1109/TCYB.2016.2536752
10.1109/CVPR46437.2021.01102
10.1109/CVPR.2015.7298624
10.1109/ICCV.2013.170
10.1007/978-3-642-23783-6_26
10.1109/34.927464
10.1109/TPAMI.2018.2794348
10.1609/aaai.v35i10.17037
10.1007/978-3-642-33786-4_26
10.1007/11744085_8
10.1109/TPAMI.2005.244
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3168882
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2659
ExternalDocumentID 35452385
10_1109_TPAMI_2022_3168882
9762016
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072295; U1936214; 61931022
  funderid: 10.13039/501100001809
– fundername: Science and Technology Planning Project of Zhejiang Province
  grantid: 2022C01090
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-40aed3f2eece072892d360e7fcf5d244ed01f88f548142c868ccbb26dc9240df3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912386000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 09:58:33 EDT 2025
Sun Jun 29 16:48:20 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Tue Nov 18 22:33:42 EST 2025
Sat Nov 29 02:58:19 EST 2025
Wed Aug 27 02:54:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-40aed3f2eece072892d360e7fcf5d244ed01f88f548142c868ccbb26dc9240df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4479-5680
0000-0001-8249-2608
0000-0002-2148-6279
0000-0001-5867-1315
PMID 35452385
PQID 2761374989
PQPubID 85458
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2022_3168882
crossref_primary_10_1109_TPAMI_2022_3168882
ieee_primary_9762016
proquest_miscellaneous_2654282048
pubmed_primary_35452385
proquest_journals_2761374989
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Costeira (ref4) 1998; 29
ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref23
Liu (ref7)
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref9
Lafferty (ref24)
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1609/aaai.v32i1.11712
– ident: ref1
  doi: 10.1109/CVPR.2007.382974
– ident: ref28
  doi: 10.1109/CVPR.2014.484
– ident: ref3
  doi: 10.1109/34.291440
– start-page: 663
  volume-title: Proc. 27th Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Robust subspace segmentation by low-rank representation
– ident: ref19
  doi: 10.1109/CVPR.2013.62
– ident: ref22
  doi: 10.1109/TPAMI.2014.2303095
– ident: ref25
  doi: 10.1002/nav.3800020109
– ident: ref13
  doi: 10.1007/s11263-008-0178-9
– volume: 29
  start-page: 108
  issue: 3
  year: 1998
  ident: ref4
  article-title: A multibody factorization method for independently moving objects
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008000628999
– ident: ref14
  doi: 10.1109/CVPR46437.2021.00119
– ident: ref21
  doi: 10.1109/TPAMI.2012.63
– ident: ref17
  doi: 10.1109/TIT.2019.2915593
– ident: ref11
  doi: 10.1007/978-3-540-24673-2_32
– ident: ref18
  doi: 10.1109/CVPR.2014.482
– ident: ref6
  doi: 10.1109/CVPR.2009.5206547
– ident: ref20
  doi: 10.1109/TCYB.2016.2536752
– ident: ref15
  doi: 10.1109/CVPR46437.2021.01102
– ident: ref26
  doi: 10.1109/CVPR.2015.7298624
– ident: ref9
  doi: 10.1109/ICCV.2013.170
– ident: ref10
  doi: 10.1007/978-3-642-23783-6_26
– ident: ref2
  doi: 10.1109/34.927464
– start-page: 282
  volume-title: Proc. 18th Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data
– ident: ref27
  doi: 10.1109/TPAMI.2018.2794348
– ident: ref16
  doi: 10.1609/aaai.v35i10.17037
– ident: ref8
  doi: 10.1007/978-3-642-33786-4_26
– ident: ref12
  doi: 10.1007/11744085_8
– ident: ref5
  doi: 10.1109/TPAMI.2005.244
SSID ssj0014503
Score 2.532116
Snippet Subspace clustering is useful for clustering data points according to the underlying subspaces. Many methods have been presented in recent years, among which...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2652
SubjectTerms Clustering
Clustering algorithms
Columns (structural)
Computer vision
constrained homogenous function
Data points
Energy
Errors
Geometry
iterative algorithm
Iterative algorithms
Iterative methods
Least squares method
Machine learning
Machine learning algorithms
maximum block energy
Principal component analysis
robust
Subspace clustering
Subspaces
Title Maximum Block Energy Guided Robust Subspace Clustering
URI https://ieeexplore.ieee.org/document/9762016
https://www.ncbi.nlm.nih.gov/pubmed/35452385
https://www.proquest.com/docview/2761374989
https://www.proquest.com/docview/2654282048
Volume 45
WOSCitedRecordID wos000912386000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BqhAcoIVSQikyEjcaSOys7RwpgrYHEEJU2lvk2GNpBexW7Kbqz2fsfIgDReotksdJ5JnJzIs98wCOuPF6hChSZRymheOY1qURqUZnhBGulLmLZBPq-lqPx-XNEnwdamEQMR4-w5NwGffy3cw24VfZKYVOildyGZaVkm2t1rBjUIwiCzINk4cTjOgLZLLy9O7m7OonQUHOTwJNE42uwaoI5NoiUCi_iEeRYOXfuWaMOZeb__e272Gjyy3ZWWsMH2AJp1uw2fM2sM6Nt2D9RRPCbZBX5u_ksXlk3yiu3bOLWAzIvjcTh47dzupmvmDh80LgGtn5QxM6K9DEj_Dr8uLu_EfasSmkVozyBQFFg054jmgxU4SzuBMyQ-WtHzkK8uiy3GvtCcLkBbdaamvrmktnCaJlzosdWJnOprgLzBeZrpWQkvsgmmsjPZe1x5Bu8sIkkPdrWtmu1XhgvHioIuTIyiqqpAoqqTqVJHA8zPndNtp4U3o7LPgg2a11Avu96qrOF-cVV5SyqKLUZQKHwzB5UdgaMVOcNSQTeLt0aGKcwKdW5cO9e0vZe_2Zn2EtUNC3J7n3YWXx1OAXeGf_LCbzpwMy1bE-iKb6DJBS4XQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4gGsEHUUAtoiyJb1pod9vt9hEJCIG7EHImvDXb3dnkItwZ7mr8853d_ggPYuJbk51tm5mdznzdnfkAPnHtVI4o4kJbjDPLMa5LLWKFVgstbClTG8gmivFY3dyUVyvwZaiFQcRw-AwP_GXYy7dz0_hfZYcUOileySfwNM8ynrTVWsOeQZYHHmQSIB8nINGXyCTl4eTqaHROYJDzA0_URKPr8Fx4em3hSZQfRKRAsfJ4thmizunG_73vK3jZZZfsqF0Or2EFZ5uw0TM3sM6RN-HFgzaEWyBH-vf0rrljXymy_WAnoRyQfWumFi27ntfNYsn8B4bgNbLj28b3VqCJ2_D99GRyfBZ3fAqxEXm6JKio0QrHEQ0mBSEtboVMsHDG5ZbCPNokdUo5AjFpxo2Sypi65tIaAmmJdeINrM7mM3wHzGWJqgshJXdeNFVaOi5rhz7h5JmOIO11Wpmu2bjnvLitAuhIyiqYpPImqTqTRPB5mPOzbbXxT-ktr_BBstN1BLu96arOGxcVLyhpKbJSlRHsD8PkR35zRM9w3pCMZ-5Svo1xBG9bkw_37lfKzt-fuQdrZ5PRZXV5Pr54D-uekL49170Lq8v7Bj_AM_NrOV3cfwwL9g8kg-PT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Block+Energy+Guided+Robust+Subspace+Clustering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Qin%2C+Yalan&rft.au=Zhang%2C+Xinpeng&rft.au=Shen%2C+Liquan&rft.au=Feng%2C+Guorui&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=45&rft.issue=2&rft.spage=2652&rft_id=info:doi/10.1109%2FTPAMI.2022.3168882&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon