An RNN-Based Algorithm for Decentralized-Partial-Consensus Constrained Optimization

This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interco...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 34; číslo 1; s. 534 - 542
Hlavní autori: Xia, Zicong, Liu, Yang, Qiu, Jianlong, Ruan, Qihua, Cao, Jinde
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the optimization problem. In addition, based on nonsmooth analysis and Lyapunov theory, the convergence of continuous-time algorithm is further proved. Finally, several examples demonstrate the effectiveness of main results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3098668