Parallel and Scalable Heat Methods for Geodesic Distance Computation

In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 2; S. 579 - 594
Hauptverfasser: Tao, Jiong, Zhang, Juyong, Deng, Bailin, Fang, Zheng, Peng, Yue, He, Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.
AbstractList In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.
In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.
In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.
Author Tao, Jiong
Deng, Bailin
Peng, Yue
He, Ying
Fang, Zheng
Zhang, Juyong
Author_xml – sequence: 1
  givenname: Jiong
  surname: Tao
  fullname: Tao, Jiong
  email: taojiong@mail.ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 2
  givenname: Juyong
  orcidid: 0000-0002-1805-1426
  surname: Zhang
  fullname: Zhang, Juyong
  email: juyong@ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 3
  givenname: Bailin
  orcidid: 0000-0002-0158-7670
  surname: Deng
  fullname: Deng, Bailin
  email: DengB3@cardiff.ac.uk
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 4
  givenname: Zheng
  surname: Fang
  fullname: Fang, Zheng
  email: fz0420@hotmail.com
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Yue
  orcidid: 0000-0002-8415-9128
  surname: Peng
  fullname: Peng, Yue
  email: echoyue@mail.ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 6
  givenname: Ying
  orcidid: 0000-0002-6749-4485
  surname: He
  fullname: He, Ying
  email: yhe@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398106$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi1UBG3hD4CEIrGwpNjnpHFGVL4qFYFEmS3HvohUblzsZODfY2jLwMBytzzP6e7eERm0rkVCzhidMEbL6-XLzdN8ApSVEyg5B1oekCGwKU1LKGFAhpRNIRUCxDEZhbCilGU55UfkmDNeCkanQ3L7oryyFm2iWpO8amVVZTF5RNUlT9i9OxOS2vnkAZ3B0OjktgmdajUmM7fe9J3qGteekMNa2YCnuz4mb_d3y9ljunh-mM9uFqnmOetSjtUUsWaiFkg1GlMLaupKUFFojkpopkwFADUynuWRNjSvmM5QFUxkGeVjcrWdu_Huo8fQyXUTNFqrWnR9kAARzGOBiF7-QVeu923cTkJWFJAJkfFIXeyovlqjkRvfrJX_lPv_REBsAe1dCB5rqZvtzZ1XjZWMyu8o5E8U8jsKuYsiqvBH3U__VzrfSg0i_gqiEGVciH8BSMSTXg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cad_2022_103333
crossref_primary_10_1109_TVCG_2021_3109975
crossref_primary_10_1016_j_cag_2021_04_029
crossref_primary_10_1145_3528223_3530175
crossref_primary_10_1016_j_cagd_2024_102291
crossref_primary_10_3390_math12070993
crossref_primary_10_1109_TVCG_2021_3109042
crossref_primary_10_1109_TVCG_2021_3135021
crossref_primary_10_1007_s00466_022_02233_3
crossref_primary_10_1038_s41598_022_17956_9
crossref_primary_10_1109_TVCG_2024_3466242
crossref_primary_10_1145_3487909
Cites_doi 10.1080/10867651.1998.10487494
10.1145/3306346.3322979
10.1137/090757216
10.1137/S0036144598347059
10.1073/pnas.95.15.8431
10.1111/j.1467-8659.2010.01761.x
10.1145/2070781.2024208
10.1016/j.cagd.2017.03.010
10.1145/2897824.2925875
10.1145/3131280
10.1109/TVCG.2017.2730875
10.1561/0600000029
10.1145/2516971.2516977
10.1109/TAC.2016.2564160
10.1090/S0025-5718-03-01485-6
10.1007/s00454-007-9006-1
10.1016/S0925-7721(99)00007-3
10.1561/2200000016
10.1109/34.546254
10.1137/120896219
10.1109/2945.998671
10.1137/080724265
10.1145/98524.98601
10.1016/0010-4655(89)90167-7
10.1137/0216045
10.1145/2508363.2508379
10.1111/cgf.12611
10.1145/3243651
10.1016/j.cad.2018.04.021
10.1109/34.841758
10.1145/1409625.1409626
10.1109/TPAMI.2013.199
10.1007/s11263-005-1085-y
10.1109/TAC.2014.2354892
10.1137/090774823
10.1145/1073204.1073228
10.1145/1559755.1559761
10.1007/978-3-7643-8621-4_16
10.1145/2897824.2925930
10.1002/cpa.3160200210
10.1145/2534161
10.1109/TPAMI.2017.2662005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2019.2933209
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 594
ExternalDocumentID 31398106
10_1109_TPAMI_2019_2933209
8789398
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  grantid: 2018495
  funderid: 10.13039/501100004739
– fundername: National Natural Science Foundation of China
  grantid: 61672481
  funderid: 10.13039/501100001809
– fundername: Singapore MOE
  grantid: RG26/17
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-3eb6eef18f8e0ceddf80dfb8087c3ea8c1adb222fe13453ebd05b1c4ea7184403
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607383300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 01:29:51 EDT 2025
Sun Jun 29 16:53:50 EDT 2025
Thu Apr 03 06:57:24 EDT 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 21:21:28 EST 2025
Wed Aug 27 06:01:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3eb6eef18f8e0ceddf80dfb8087c3ea8c1adb222fe13453ebd05b1c4ea7184403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8415-9128
0000-0002-1805-1426
0000-0002-6749-4485
0000-0002-0158-7670
PMID 31398106
PQID 2477248843
PQPubID 85458
PageCount 16
ParticipantIDs pubmed_primary_31398106
crossref_citationtrail_10_1109_TPAMI_2019_2933209
proquest_journals_2477248843
proquest_miscellaneous_2271852712
crossref_primary_10_1109_TPAMI_2019_2933209
ieee_primary_8789398
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
eppstein (ref38) 2003
ref1
ref39
ref17
ref16
ref19
ref18
crane (ref35) 2013
peyré (ref2) 2010; 5
guennebaud (ref44) 2010
ref46
ref24
ref45
ref23
sethian (ref9) 1996
ref26
ref47
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
(ref42) 0
References_xml – ident: ref33
  doi: 10.1080/10867651.1998.10487494
– ident: ref40
  doi: 10.1145/3306346.3322979
– ident: ref43
  doi: 10.1137/090757216
– ident: ref10
  doi: 10.1137/S0036144598347059
– ident: ref11
  doi: 10.1073/pnas.95.15.8431
– ident: ref37
  doi: 10.1111/j.1467-8659.2010.01761.x
– ident: ref20
  doi: 10.1145/2070781.2024208
– ident: ref23
  doi: 10.1016/j.cagd.2017.03.010
– ident: ref32
  doi: 10.1145/2897824.2925875
– ident: ref14
  doi: 10.1145/3131280
– ident: ref29
  doi: 10.1109/TVCG.2017.2730875
– volume: 5
  start-page: 197
  year: 2010
  ident: ref2
  article-title: Geodesic methods in computer vision and graphics
  publication-title: Found Trends Comput Graph Vis
  doi: 10.1561/0600000029
– ident: ref1
  doi: 10.1145/2516971.2516977
– ident: ref47
  doi: 10.1109/TAC.2016.2564160
– ident: ref41
  doi: 10.1090/S0025-5718-03-01485-6
– year: 2013
  ident: ref35
  article-title: Digital geometry processing with discrete exterior calculus
  publication-title: Proc ACM SIGGRAPH Courses
– ident: ref39
  doi: 10.1007/s00454-007-9006-1
– ident: ref34
  doi: 10.1016/S0925-7721(99)00007-3
– year: 1996
  ident: ref9
  publication-title: Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry Fluid Mechanics Computer Vision and Materials Science
– ident: ref16
  doi: 10.1561/2200000016
– ident: ref4
  doi: 10.1109/34.546254
– year: 2010
  ident: ref44
  article-title: Eigen v3
– year: 0
  ident: ref42
– ident: ref45
  doi: 10.1137/120896219
– ident: ref8
  doi: 10.1109/2945.998671
– ident: ref30
  doi: 10.1137/080724265
– ident: ref13
  doi: 10.1145/98524.98601
– ident: ref28
  doi: 10.1016/0010-4655(89)90167-7
– ident: ref12
  doi: 10.1137/0216045
– ident: ref22
  doi: 10.1145/2508363.2508379
– ident: ref27
  doi: 10.1111/cgf.12611
– ident: ref26
  doi: 10.1145/3243651
– ident: ref24
  doi: 10.1016/j.cad.2018.04.021
– ident: ref5
  doi: 10.1109/34.841758
– ident: ref25
  doi: 10.1145/1409625.1409626
– ident: ref7
  doi: 10.1109/TPAMI.2013.199
– ident: ref3
  doi: 10.1007/s11263-005-1085-y
– ident: ref46
  doi: 10.1109/TAC.2014.2354892
– ident: ref31
  doi: 10.1137/090774823
– ident: ref17
  doi: 10.1145/1073204.1073228
– ident: ref18
  doi: 10.1145/1559755.1559761
– ident: ref36
  doi: 10.1007/978-3-7643-8621-4_16
– ident: ref21
  doi: 10.1145/2897824.2925930
– ident: ref15
  doi: 10.1002/cpa.3160200210
– ident: ref19
  doi: 10.1145/2534161
– ident: ref6
  doi: 10.1109/TPAMI.2017.2662005
– start-page: 599
  year: 2003
  ident: ref38
  article-title: Dynamic generators of topologically embedded graphs
  publication-title: Proc 14th Annu ACM Symp Discr Algorithms
SSID ssj0014503
Score 2.4619148
Snippet In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms Apexes
Approximation algorithms
Computation
Computational modeling
heat diffusion
Heat method
Heat recovery
Linear systems
Memory management
Optimization
parallel algorithm
Parallel processing
poisson equation
Random access memory
scalability
Solvers
Title Parallel and Scalable Heat Methods for Geodesic Distance Computation
URI https://ieeexplore.ieee.org/document/8789398
https://www.ncbi.nlm.nih.gov/pubmed/31398106
https://www.proquest.com/docview/2477248843
https://www.proquest.com/docview/2271852712
Volume 43
WOSCitedRecordID wos000607383300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4UGh5BEplJG6Q1omdtX2sKKUcWu2hSHuL_BhLSKss2kd_f8fOQz0AEjdLmTjRPDIz8cx8AJ-k8NGLOCud1baUdWhK5wytSFeMjVa52INNqNtbvViY-R58mXphEDEXn-FZWuaz_LDyu_Sr7Fwr8q5G78O-Uqrv1ZpODGSTUZApgiELpzRibJDh5vxufnHzI1VxmTNybqLmaVSooNBHVwno6JE_ygArf481s8-5Ovy_t30Bz4fYkl30yvAS9rA7gsMRt4ENZnwEzx4NITyGy7ldJ0CVJbNdICK7TN1U7Jo-0uwm40tvGEW27DuuApJM2WUKOWkj1u-cRfsKfl59u_t6XQ7YCqUXTbUtBboZYqx01Mg9hhA1D9FprpUXaLWvbHAUO0SshGyIOvDGVV6iJWcmJRev4aBbdfgWGPkzYqaM3klKf4J3iksbsakNRZ_1zBRQjRxu_TB4POFfLNucgHDTZgG1SUDtIKACPk_3_O7HbvyT-jixf6IcOF_AySjIdrDMTVtLyidIE6Uo4ON0mWwqHZTYDlc7oqlV6ilXVV3Am14Bpr1HvXn352e-h6d1qnrJdd0ncLBd7_ADPPH321-b9Skp7kKfZsV9AAI85uU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcWmhLm1LASNwgbWI7G-dYUcpWdFd7WKTeIj_GEtIqi_bR39-x81APgMTNUiZONI_MTDwzH8AnKay3wo9So5VOJXdFakxFK9KVSntdGt-CTZTTqbq7q2Y78GXohUHEWHyG52EZz_Ld0m7Dr7ILVZJ3rdQTeFpIyfO2W2s4M5BFxEGmGIZsnBKJvkUmqy7ms8vJTajjqs7JvQmehWGhgoIflQeoo0ceKUKs_D3ajF7nev__3vcV7HXRJbts1eE17GBzAPs9cgPrDPkAXj4aQ3gIVzO9CpAqC6YbR0R6Efqp2Jg-02wSEabXjGJb9h2XDkmq7CoEnbQRa3eOwj2Cn9ff5l_HaYeukFpR5JtUoBkh-lx5hZlF57zKnDcqU6UVqJXNtTMUPXjMhSyI2mWFya1ETe5Myky8gd1m2eAJMPJoxEzprZGUADlrykxqjwWvKP7koyqBvOdwbbvR4wEBY1HHFCSr6iigOgio7gSUwOfhnt_t4I1_Uh8G9g-UHecTOOsFWXe2ua65pIyCdFGKBD4Ol8mqwlGJbnC5JRpehq7yMucJHLcKMOzd683pn5_5AZ6P55Pb-vZm-uMtvOChBiZWeZ_B7ma1xXfwzN5vfq1X76P6PgC79ulE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+Scalable+Heat+Methods+for+Geodesic+Distance+Computation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tao%2C+Jiong&rft.au=Zhang%2C+Juyong&rft.au=Deng%2C+Bailin&rft.au=Zheng%2C+Fang&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=2&rft.spage=579&rft_id=info:doi/10.1109%2FTPAMI.2019.2933209&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon