Parallel and Scalable Heat Methods for Geodesic Distance Computation
In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of it...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 2; S. 579 - 594 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers. |
|---|---|
| AbstractList | In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers. In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers. In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method <xref ref-type="bibr" rid="ref1">[1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers. |
| Author | Tao, Jiong Deng, Bailin Peng, Yue He, Ying Fang, Zheng Zhang, Juyong |
| Author_xml | – sequence: 1 givenname: Jiong surname: Tao fullname: Tao, Jiong email: taojiong@mail.ustc.edu.cn organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China – sequence: 2 givenname: Juyong orcidid: 0000-0002-1805-1426 surname: Zhang fullname: Zhang, Juyong email: juyong@ustc.edu.cn organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China – sequence: 3 givenname: Bailin orcidid: 0000-0002-0158-7670 surname: Deng fullname: Deng, Bailin email: DengB3@cardiff.ac.uk organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 4 givenname: Zheng surname: Fang fullname: Fang, Zheng email: fz0420@hotmail.com organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 5 givenname: Yue orcidid: 0000-0002-8415-9128 surname: Peng fullname: Peng, Yue email: echoyue@mail.ustc.edu.cn organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China – sequence: 6 givenname: Ying orcidid: 0000-0002-6749-4485 surname: He fullname: He, Ying email: yhe@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31398106$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PwzAQhi1UBG3hD4CEIrGwpNjnpHFGVL4qFYFEmS3HvohUblzsZODfY2jLwMBytzzP6e7eERm0rkVCzhidMEbL6-XLzdN8ApSVEyg5B1oekCGwKU1LKGFAhpRNIRUCxDEZhbCilGU55UfkmDNeCkanQ3L7oryyFm2iWpO8amVVZTF5RNUlT9i9OxOS2vnkAZ3B0OjktgmdajUmM7fe9J3qGteekMNa2YCnuz4mb_d3y9ljunh-mM9uFqnmOetSjtUUsWaiFkg1GlMLaupKUFFojkpopkwFADUynuWRNjSvmM5QFUxkGeVjcrWdu_Huo8fQyXUTNFqrWnR9kAARzGOBiF7-QVeu923cTkJWFJAJkfFIXeyovlqjkRvfrJX_lPv_REBsAe1dCB5rqZvtzZ1XjZWMyu8o5E8U8jsKuYsiqvBH3U__VzrfSg0i_gqiEGVciH8BSMSTXg |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_cad_2022_103333 crossref_primary_10_1109_TVCG_2021_3109975 crossref_primary_10_1016_j_cag_2021_04_029 crossref_primary_10_1145_3528223_3530175 crossref_primary_10_1016_j_cagd_2024_102291 crossref_primary_10_3390_math12070993 crossref_primary_10_1109_TVCG_2021_3109042 crossref_primary_10_1109_TVCG_2021_3135021 crossref_primary_10_1007_s00466_022_02233_3 crossref_primary_10_1038_s41598_022_17956_9 crossref_primary_10_1109_TVCG_2024_3466242 crossref_primary_10_1145_3487909 |
| Cites_doi | 10.1080/10867651.1998.10487494 10.1145/3306346.3322979 10.1137/090757216 10.1137/S0036144598347059 10.1073/pnas.95.15.8431 10.1111/j.1467-8659.2010.01761.x 10.1145/2070781.2024208 10.1016/j.cagd.2017.03.010 10.1145/2897824.2925875 10.1145/3131280 10.1109/TVCG.2017.2730875 10.1561/0600000029 10.1145/2516971.2516977 10.1109/TAC.2016.2564160 10.1090/S0025-5718-03-01485-6 10.1007/s00454-007-9006-1 10.1016/S0925-7721(99)00007-3 10.1561/2200000016 10.1109/34.546254 10.1137/120896219 10.1109/2945.998671 10.1137/080724265 10.1145/98524.98601 10.1016/0010-4655(89)90167-7 10.1137/0216045 10.1145/2508363.2508379 10.1111/cgf.12611 10.1145/3243651 10.1016/j.cad.2018.04.021 10.1109/34.841758 10.1145/1409625.1409626 10.1109/TPAMI.2013.199 10.1007/s11263-005-1085-y 10.1109/TAC.2014.2354892 10.1137/090774823 10.1145/1073204.1073228 10.1145/1559755.1559761 10.1007/978-3-7643-8621-4_16 10.1145/2897824.2925930 10.1002/cpa.3160200210 10.1145/2534161 10.1109/TPAMI.2017.2662005 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2019.2933209 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 594 |
| ExternalDocumentID | 31398106 10_1109_TPAMI_2019_2933209 8789398 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences grantid: 2018495 funderid: 10.13039/501100004739 – fundername: National Natural Science Foundation of China grantid: 61672481 funderid: 10.13039/501100001809 – fundername: Singapore MOE grantid: RG26/17 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-3eb6eef18f8e0ceddf80dfb8087c3ea8c1adb222fe13453ebd05b1c4ea7184403 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607383300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 01:29:51 EDT 2025 Sun Jun 29 16:53:50 EDT 2025 Thu Apr 03 06:57:24 EDT 2025 Sat Nov 29 05:15:59 EST 2025 Tue Nov 18 21:21:28 EST 2025 Wed Aug 27 06:01:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-3eb6eef18f8e0ceddf80dfb8087c3ea8c1adb222fe13453ebd05b1c4ea7184403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8415-9128 0000-0002-1805-1426 0000-0002-6749-4485 0000-0002-0158-7670 |
| PMID | 31398106 |
| PQID | 2477248843 |
| PQPubID | 85458 |
| PageCount | 16 |
| ParticipantIDs | pubmed_primary_31398106 crossref_citationtrail_10_1109_TPAMI_2019_2933209 proquest_journals_2477248843 proquest_miscellaneous_2271852712 crossref_primary_10_1109_TPAMI_2019_2933209 ieee_primary_8789398 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 eppstein (ref38) 2003 ref1 ref39 ref17 ref16 ref19 ref18 crane (ref35) 2013 peyré (ref2) 2010; 5 guennebaud (ref44) 2010 ref46 ref24 ref45 ref23 sethian (ref9) 1996 ref26 ref47 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 (ref42) 0 |
| References_xml | – ident: ref33 doi: 10.1080/10867651.1998.10487494 – ident: ref40 doi: 10.1145/3306346.3322979 – ident: ref43 doi: 10.1137/090757216 – ident: ref10 doi: 10.1137/S0036144598347059 – ident: ref11 doi: 10.1073/pnas.95.15.8431 – ident: ref37 doi: 10.1111/j.1467-8659.2010.01761.x – ident: ref20 doi: 10.1145/2070781.2024208 – ident: ref23 doi: 10.1016/j.cagd.2017.03.010 – ident: ref32 doi: 10.1145/2897824.2925875 – ident: ref14 doi: 10.1145/3131280 – ident: ref29 doi: 10.1109/TVCG.2017.2730875 – volume: 5 start-page: 197 year: 2010 ident: ref2 article-title: Geodesic methods in computer vision and graphics publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000029 – ident: ref1 doi: 10.1145/2516971.2516977 – ident: ref47 doi: 10.1109/TAC.2016.2564160 – ident: ref41 doi: 10.1090/S0025-5718-03-01485-6 – year: 2013 ident: ref35 article-title: Digital geometry processing with discrete exterior calculus publication-title: Proc ACM SIGGRAPH Courses – ident: ref39 doi: 10.1007/s00454-007-9006-1 – ident: ref34 doi: 10.1016/S0925-7721(99)00007-3 – year: 1996 ident: ref9 publication-title: Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry Fluid Mechanics Computer Vision and Materials Science – ident: ref16 doi: 10.1561/2200000016 – ident: ref4 doi: 10.1109/34.546254 – year: 2010 ident: ref44 article-title: Eigen v3 – year: 0 ident: ref42 – ident: ref45 doi: 10.1137/120896219 – ident: ref8 doi: 10.1109/2945.998671 – ident: ref30 doi: 10.1137/080724265 – ident: ref13 doi: 10.1145/98524.98601 – ident: ref28 doi: 10.1016/0010-4655(89)90167-7 – ident: ref12 doi: 10.1137/0216045 – ident: ref22 doi: 10.1145/2508363.2508379 – ident: ref27 doi: 10.1111/cgf.12611 – ident: ref26 doi: 10.1145/3243651 – ident: ref24 doi: 10.1016/j.cad.2018.04.021 – ident: ref5 doi: 10.1109/34.841758 – ident: ref25 doi: 10.1145/1409625.1409626 – ident: ref7 doi: 10.1109/TPAMI.2013.199 – ident: ref3 doi: 10.1007/s11263-005-1085-y – ident: ref46 doi: 10.1109/TAC.2014.2354892 – ident: ref31 doi: 10.1137/090774823 – ident: ref17 doi: 10.1145/1073204.1073228 – ident: ref18 doi: 10.1145/1559755.1559761 – ident: ref36 doi: 10.1007/978-3-7643-8621-4_16 – ident: ref21 doi: 10.1145/2897824.2925930 – ident: ref15 doi: 10.1002/cpa.3160200210 – ident: ref19 doi: 10.1145/2534161 – ident: ref6 doi: 10.1109/TPAMI.2017.2662005 – start-page: 599 year: 2003 ident: ref38 article-title: Dynamic generators of topologically embedded graphs publication-title: Proc 14th Annu ACM Symp Discr Algorithms |
| SSID | ssj0014503 |
| Score | 2.4619148 |
| Snippet | In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 579 |
| SubjectTerms | Apexes Approximation algorithms Computation Computational modeling heat diffusion Heat method Heat recovery Linear systems Memory management Optimization parallel algorithm Parallel processing poisson equation Random access memory scalability Solvers |
| Title | Parallel and Scalable Heat Methods for Geodesic Distance Computation |
| URI | https://ieeexplore.ieee.org/document/8789398 https://www.ncbi.nlm.nih.gov/pubmed/31398106 https://www.proquest.com/docview/2477248843 https://www.proquest.com/docview/2271852712 |
| Volume | 43 |
| WOSCitedRecordID | wos000607383300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4UGh5BEplJG6Q1omdtX2sKKUcWu2hSHuL_BhLSKss2kd_f8fOQz0AEjdLmTjRPDIz8cx8AJ-k8NGLOCud1baUdWhK5wytSFeMjVa52INNqNtbvViY-R58mXphEDEXn-FZWuaz_LDyu_Sr7Fwr8q5G78O-Uqrv1ZpODGSTUZApgiELpzRibJDh5vxufnHzI1VxmTNybqLmaVSooNBHVwno6JE_ygArf481s8-5Ovy_t30Bz4fYkl30yvAS9rA7gsMRt4ENZnwEzx4NITyGy7ldJ0CVJbNdICK7TN1U7Jo-0uwm40tvGEW27DuuApJM2WUKOWkj1u-cRfsKfl59u_t6XQ7YCqUXTbUtBboZYqx01Mg9hhA1D9FprpUXaLWvbHAUO0SshGyIOvDGVV6iJWcmJRev4aBbdfgWGPkzYqaM3klKf4J3iksbsakNRZ_1zBRQjRxu_TB4POFfLNucgHDTZgG1SUDtIKACPk_3_O7HbvyT-jixf6IcOF_AySjIdrDMTVtLyidIE6Uo4ON0mWwqHZTYDlc7oqlV6ilXVV3Am14Bpr1HvXn352e-h6d1qnrJdd0ncLBd7_ADPPH321-b9Skp7kKfZsV9AAI85uU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcWmhLm1LASNwgbWI7G-dYUcpWdFd7WKTeIj_GEtIqi_bR39-x81APgMTNUiZONI_MTDwzH8AnKay3wo9So5VOJXdFakxFK9KVSntdGt-CTZTTqbq7q2Y78GXohUHEWHyG52EZz_Ld0m7Dr7ILVZJ3rdQTeFpIyfO2W2s4M5BFxEGmGIZsnBKJvkUmqy7ms8vJTajjqs7JvQmehWGhgoIflQeoo0ceKUKs_D3ajF7nev__3vcV7HXRJbts1eE17GBzAPs9cgPrDPkAXj4aQ3gIVzO9CpAqC6YbR0R6Efqp2Jg-02wSEabXjGJb9h2XDkmq7CoEnbQRa3eOwj2Cn9ff5l_HaYeukFpR5JtUoBkh-lx5hZlF57zKnDcqU6UVqJXNtTMUPXjMhSyI2mWFya1ETe5Myky8gd1m2eAJMPJoxEzprZGUADlrykxqjwWvKP7koyqBvOdwbbvR4wEBY1HHFCSr6iigOgio7gSUwOfhnt_t4I1_Uh8G9g-UHecTOOsFWXe2ua65pIyCdFGKBD4Ol8mqwlGJbnC5JRpehq7yMucJHLcKMOzd683pn5_5AZ6P55Pb-vZm-uMtvOChBiZWeZ_B7ma1xXfwzN5vfq1X76P6PgC79ulE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+Scalable+Heat+Methods+for+Geodesic+Distance+Computation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tao%2C+Jiong&rft.au=Zhang%2C+Juyong&rft.au=Deng%2C+Bailin&rft.au=Zheng%2C+Fang&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=2&rft.spage=579&rft_id=info:doi/10.1109%2FTPAMI.2019.2933209&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |