On-Device Reliability Assessment and Prediction of Missing Photoplethysmographic Data Using Deep Neural Networks

Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and mu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on biomedical circuits and systems Ročník 14; číslo 6; s. 1323 - 1332
Hlavní autori: Singha Roy, Monalisa, Roy, Biplab, Gupta, Rajarshi, Das Sharma, Kaushik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1932-4545, 1940-9990, 1940-9990
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and multilayer perceptron neural network (MLPNN). The missing segments were predicted by a personalized convolutional neural network (CNN) and long-short term memory (LSTM) model using a short history of the same channel data. Forty sets of volunteers' data, consisting of equal share of healthy and cardiovascular subjects were used for validation and testing. The PPG reliability assessment model (PRAM) achieved over 95% accuracy for correctly identifying acceptable PPG beats out of total 5000 using expert annotated data. Disagreement with experts' annotation was nearly 3.5%. The missing segment prediction model (MSPM) achieved a root mean square error (RMSE) of 0.22, and mean absolute error (MAE) of 0.11 for 40 missing beats prediction using only four beat history from the same channel PPG. The two models were integrated in a standalone device based on quad-core ARM Cortex-A53, 1.2 GHz, with 1 GB RAM, with 130 MB memory requirement and latency ∼0.35 s per beat prediction with a 30 s frame. The present method also provides improved performance with published works on PPG quality assessment and missing data prediction using two public datasets, CinC and MIMIC-II under PhysioNet.
AbstractList Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and multilayer perceptron neural network (MLPNN). The missing segments were predicted by a personalized convolutional neural network (CNN) and long-short term memory (LSTM) model using a short history of the same channel data. Forty sets of volunteers' data, consisting of equal share of healthy and cardiovascular subjects were used for validation and testing. The PPG reliability assessment model (PRAM) achieved over 95% accuracy for correctly identifying acceptable PPG beats out of total 5000 using expert annotated data. Disagreement with experts' annotation was nearly 3.5%. The missing segment prediction model (MSPM) achieved a root mean square error (RMSE) of 0.22, and mean absolute error (MAE) of 0.11 for 40 missing beats prediction using only four beat history from the same channel PPG. The two models were integrated in a standalone device based on quad-core ARM Cortex-A53, 1.2 GHz, with 1 GB RAM, with 130 MB memory requirement and latency ∼0.35 s per beat prediction with a 30 s frame. The present method also provides improved performance with published works on PPG quality assessment and missing data prediction using two public datasets, CinC and MIMIC-II under PhysioNet.Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and multilayer perceptron neural network (MLPNN). The missing segments were predicted by a personalized convolutional neural network (CNN) and long-short term memory (LSTM) model using a short history of the same channel data. Forty sets of volunteers' data, consisting of equal share of healthy and cardiovascular subjects were used for validation and testing. The PPG reliability assessment model (PRAM) achieved over 95% accuracy for correctly identifying acceptable PPG beats out of total 5000 using expert annotated data. Disagreement with experts' annotation was nearly 3.5%. The missing segment prediction model (MSPM) achieved a root mean square error (RMSE) of 0.22, and mean absolute error (MAE) of 0.11 for 40 missing beats prediction using only four beat history from the same channel PPG. The two models were integrated in a standalone device based on quad-core ARM Cortex-A53, 1.2 GHz, with 1 GB RAM, with 130 MB memory requirement and latency ∼0.35 s per beat prediction with a 30 s frame. The present method also provides improved performance with published works on PPG quality assessment and missing data prediction using two public datasets, CinC and MIMIC-II under PhysioNet.
Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and multilayer perceptron neural network (MLPNN). The missing segments were predicted by a personalized convolutional neural network (CNN) and long-short term memory (LSTM) model using a short history of the same channel data. Forty sets of volunteers' data, consisting of equal share of healthy and cardiovascular subjects were used for validation and testing. The PPG reliability assessment model (PRAM) achieved over 95% accuracy for correctly identifying acceptable PPG beats out of total 5000 using expert annotated data. Disagreement with experts' annotation was nearly 3.5%. The missing segment prediction model (MSPM) achieved a root mean square error (RMSE) of 0.22, and mean absolute error (MAE) of 0.11 for 40 missing beats prediction using only four beat history from the same channel PPG. The two models were integrated in a standalone device based on quad-core ARM Cortex-A53, 1.2 GHz, with 1 GB RAM, with 130 MB memory requirement and latency ∼0.35 s per beat prediction with a 30 s frame. The present method also provides improved performance with published works on PPG quality assessment and missing data prediction using two public datasets, CinC and MIMIC-II under PhysioNet.
Author Das Sharma, Kaushik
Gupta, Rajarshi
Singha Roy, Monalisa
Roy, Biplab
Author_xml – sequence: 1
  givenname: Monalisa
  surname: Singha Roy
  fullname: Singha Roy, Monalisa
  email: monalisa_sr03@yahoo.co, in
  organization: Electrical Engineering Section, Department of Applied Physics, University of Calcutta, Kolkata, India
– sequence: 2
  givenname: Biplab
  surname: Roy
  fullname: Roy, Biplab
  email: biplab.roy@nitmas.edu.in
  organization: Electronics & Communication Engineering Department, NITMAS, West Bengal, India
– sequence: 3
  givenname: Rajarshi
  orcidid: 0000-0001-5964-7683
  surname: Gupta
  fullname: Gupta, Rajarshi
  email: rgaphy@caluniv.ac.in
  organization: Electrical Engineering Section, Department of Applied Physics, University of Calcutta, Kolkata, India
– sequence: 4
  givenname: Kaushik
  orcidid: 0000-0002-0176-709X
  surname: Das Sharma
  fullname: Das Sharma, Kaushik
  email: kdsaphy@caluniv.ac.in
  organization: Electrical Engineering Section, Department of Applied Physics, University of Calcutta, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33026985$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gD4CELHHhssGf2fUxJBSQCq2gPVuOd7Zx2bUX20uVf4_TpBx64DIzkp9nZM17io588IDQa0pmlBL14frjcvFzxggjM05Yo7h8hk6oEqRSSpGj3cxZJaSQx-g0pTtC5Jwp9gId88LPVSNP0HjpqxX8cRbwD-idWbve5S1epAQpDeAzNr7FVxFaZ7MLHocOf3MpOX-LrzYhh7GHvNmmIdxGM26cxSuTDb55AFYAI_4OUzR9afk-xF_pJXremT7Bq0M_Qzfnn66XX6qLy89fl4uLynJJc8WBda2B2ghCJSir1oYCaRgnpjZGgDC8q6G8NZKLllMDa2ot7RpCrCiVn6H3-71jDL8nSFkPLlnoe-MhTEkzIRQTdU1lQd89Qe_CFH35XaGaWgjCSVOotwdqWg_Q6jG6wcStfrxlAZo9YGNIKUKnrctmd7Qcjes1JXoXm36ITe9i04fYisqeqI_b_yu92UsOAP4JitG5ZIr_BfhMo2g
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_TBCAS_2021_3134043
crossref_primary_10_1109_JBHI_2023_3289548
crossref_primary_10_1007_s00034_024_02658_6
crossref_primary_10_1007_s13534_022_00248_6
crossref_primary_10_3390_bioengineering11040365
crossref_primary_10_1109_TIM_2024_3450120
crossref_primary_10_1109_TBCAS_2021_3065824
crossref_primary_10_1109_TBCAS_2020_3036081
crossref_primary_10_1109_TCBB_2022_3205064
crossref_primary_10_1080_10255842_2024_2359041
crossref_primary_10_1088_1361_6501_ac2d5b
crossref_primary_10_1016_j_ress_2023_109378
crossref_primary_10_3390_en18082019
crossref_primary_10_1155_2021_9925033
crossref_primary_10_1109_TIM_2021_3102737
crossref_primary_10_1109_TIM_2022_3197781
crossref_primary_10_1109_TIM_2022_3212750
Cites_doi 10.1186/1687-6180-2012-173
10.1088/0967-3334/33/10/1617
10.1088/0967-3334/32/6/004
10.1109/JBHI.2014.2361654
10.1109/TBCAS.2012.2200677
10.1016/j.bspc.2019.101676
10.1109/JSEN.2019.2917157
10.3390/bioengineering3040021
10.1109/TIM.2018.2829488
10.1109/TCYB.2016.2536638
10.1109/TBCAS.2018.2839184
10.1016/j.bspc.2019.101747
10.1109/JBHI.2014.2338351
10.1109/TBCAS.2019.2956948
10.1109/TIM.2020.2971132
10.1109/TCSII.2019.2891636
10.1109/TBCAS.2017.2649940
10.1088/0967-3334/33/9/1491
10.1109/TBCAS.2011.2164247
10.3390/e21030274
10.1109/TBCAS.2011.2157822
10.1016/j.jocn.2019.03.003
10.1161/STROKEAHA.113.003321
10.1109/TBCAS.2011.2167717
10.1088/1361-6579/ab5b84
10.1088/0967-3334/28/3/R01
10.1109/TBCAS.2015.2477437
10.1088/0967-3334/32/3/008
10.1088/0967-3334/35/12/2543
10.1016/j.engappai.2014.05.014
10.1109/TBCAS.2019.2945114
10.1080/08037051.2018.1436400
10.1109/TBME.2009.2018297
10.1109/TBME.2012.2204882
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2020.3028935
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biotechnology Research Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 1332
ExternalDocumentID 33026985
10_1109_TBCAS_2020_3028935
9216529
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: University Grants Commission, India
  grantid: 029/17-18/1702
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-3e2fdae7a4015e9c9ba1e08230a7aa4e4a3f7e0158534d31aeb1cc1f800c4f803
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616310900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4545
1940-9990
IngestDate Sun Sep 28 08:34:39 EDT 2025
Mon Jun 30 08:37:34 EDT 2025
Thu Apr 03 07:08:31 EDT 2025
Sat Nov 29 05:32:53 EST 2025
Tue Nov 18 22:23:12 EST 2025
Wed Aug 27 05:45:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3e2fdae7a4015e9c9ba1e08230a7aa4e4a3f7e0158534d31aeb1cc1f800c4f803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0176-709X
0000-0001-5964-7683
PMID 33026985
PQID 2487440308
PQPubID 85510
PageCount 10
ParticipantIDs pubmed_primary_33026985
crossref_primary_10_1109_TBCAS_2020_3028935
proquest_journals_2487440308
crossref_citationtrail_10_1109_TBCAS_2020_3028935
proquest_miscellaneous_2449247715
ieee_primary_9216529
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References sullivan (ref33) 2010; 37
huang (ref40) 2018; 18
ref13
(ref43) 0
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
petrolis (ref32) 2010; 37
ref24
ref23
singha roy (ref34) 2019
ref26
ref25
ref20
weng (ref41) 2005
ref22
ref21
(ref36) 0
singha roy (ref37) 2018; 67
ref28
ref27
(ref35) 2010
ref29
ref8
ref7
ref9
ref4
(ref42) 1988
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1186/1687-6180-2012-173
– year: 0
  ident: ref36
  article-title: Easy Pulse PPG sensor
– ident: ref14
  doi: 10.1088/0967-3334/33/10/1617
– ident: ref29
  doi: 10.1088/0967-3334/32/6/004
– ident: ref10
  doi: 10.1109/JBHI.2014.2361654
– ident: ref3
  doi: 10.1109/TBCAS.2012.2200677
– ident: ref38
  doi: 10.1016/j.bspc.2019.101676
– ident: ref11
  doi: 10.1109/JSEN.2019.2917157
– ident: ref15
  doi: 10.3390/bioengineering3040021
– year: 2010
  ident: ref35
  article-title: Mind the Gap - The PhysioNet Computing in Cardiology Challenge 2010
– volume: 67
  start-page: 2820
  year: 2018
  ident: ref37
  article-title: Improving photoplethysmographic measurements under motion artifacts using artificial neural network for personal healthcare
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2829488
– ident: ref39
  doi: 10.1109/TCYB.2016.2536638
– ident: ref7
  doi: 10.1109/TBCAS.2018.2839184
– year: 0
  ident: ref43
  article-title: Biopac Systems USA
– ident: ref27
  doi: 10.1016/j.bspc.2019.101747
– ident: ref16
  doi: 10.1109/JBHI.2014.2338351
– ident: ref2
  doi: 10.1109/TBCAS.2019.2956948
– ident: ref22
  doi: 10.1109/TIM.2020.2971132
– ident: ref21
  doi: 10.1109/TCSII.2019.2891636
– ident: ref8
  doi: 10.1109/TBCAS.2017.2649940
– ident: ref18
  doi: 10.1088/0967-3334/33/9/1491
– ident: ref5
  doi: 10.1109/TBCAS.2011.2164247
– ident: ref31
  doi: 10.3390/e21030274
– ident: ref13
  doi: 10.1109/TBCAS.2011.2157822
– ident: ref24
  doi: 10.1016/j.jocn.2019.03.003
– start-page: 236
  year: 2019
  ident: ref34
  article-title: Reconstruction of corrupted and missing segments from photoplethysmographicdata using recurrent neural network
  publication-title: Proc IEEE TENSYMP
– year: 1988
  ident: ref42
  publication-title: Optimum Signal Processing An Introduction
– ident: ref23
  doi: 10.1161/STROKEAHA.113.003321
– volume: 37
  start-page: 317
  year: 2010
  ident: ref33
  article-title: Reconstruction of missing physiological signals using artificial neural networks
  publication-title: Proc Comput Cardiol
– ident: ref9
  doi: 10.1109/TBCAS.2011.2167717
– ident: ref20
  doi: 10.1088/1361-6579/ab5b84
– volume: 37
  start-page: 437
  year: 2010
  ident: ref32
  article-title: Principal component analysis based method for reconstruction of fragments of corrupted or lost signal in multilead data reflecting electrical heart activity and hemodynamics
  publication-title: Proc Comput Cardiol
– ident: ref1
  doi: 10.1088/0967-3334/28/3/R01
– ident: ref6
  doi: 10.1109/TBCAS.2015.2477437
– ident: ref12
  doi: 10.1088/0967-3334/32/3/008
– ident: ref19
  doi: 10.1088/0967-3334/35/12/2543
– ident: ref28
  doi: 10.1016/j.engappai.2014.05.014
– ident: ref4
  doi: 10.1109/TBCAS.2019.2945114
– ident: ref25
  doi: 10.1080/08037051.2018.1436400
– volume: 18
  year: 2018
  ident: ref40
  article-title: A Deep CNN-LSTM model for particulate matter (Pm2.5) forecasting in smart cities
  publication-title: Sensors (Switzerland)
– start-page: 41
  year: 2005
  ident: ref41
  article-title: An improved pre-processing approach for photoplethysmographic signal
  publication-title: Proc IEEE Eng Med Biol 27th Annu Conf
– ident: ref26
  doi: 10.1109/TBME.2009.2018297
– ident: ref17
  doi: 10.1109/TBME.2012.2204882
SSID ssj0056292
Score 2.3649766
Snippet Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1323
SubjectTerms Annotations
Artificial neural networks
Convolutional neural network
Convolutional neural networks
Latency
Long short term memory
Loosening
Missing data
Model accuracy
Multilayer perceptrons
Network latency
Network reliability
Neural networks
Noise reduction
on-device measurement
Photoplethsymography
photoplethysmogram (PPG)
Prediction models
prediction of missing data
Predictive models
Quality assessment
Quality control
Random access memory
Reliability
Reliability analysis
reliability assessment
Root-mean-square errors
Segments
stack denoising autoencoder
Title On-Device Reliability Assessment and Prediction of Missing Photoplethysmographic Data Using Deep Neural Networks
URI https://ieeexplore.ieee.org/document/9216529
https://www.ncbi.nlm.nih.gov/pubmed/33026985
https://www.proquest.com/docview/2487440308
https://www.proquest.com/docview/2449247715
Volume 14
WOSCitedRecordID wos000616310900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1940-9990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056292
  issn: 1932-4545
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4F1EN7oEBacEujReJGXfzMsseUEPXQhkikVW7Wej0WSGBHiYPEv2dm_VAOpVIvlqV9eOVvdndmZ_YbgLMsSNPAU9odYqzZQMldrWTqStauU2lkbHm2__yU0-nlYqFmPfja3YVBRBt8ht_41frys9Js-KjsQgX-MA7UDuxIKeu7Wu2qS9u4TYDM-gjzeMftBRlPXcy_X41uyRQMyEJlx1rI6WrIjg-GilMob-1HNsHK67qm3XMm7_9vtPuw1-iWYlQLwwH0sDiEd1uMg31Y3hTuGHl1EByMXJN0P4tRx88pdJGJ2YrdNwyZKHPxi7ChxmJ2V1Ycbs7QPtZM1_dGjHWlhQ08EGPEpWC2DxrEtA4vX3-A35Pr-dUPt0m64Jow9is3xCDPNEpNhleMyqhU-2jdcVpqHWGkw1wildE-H2Whr2mxN8bPSfE0ET3Dj7BblAUeg0hJNeEjYW9ovEgaX0cmS_OUWjKtfB474Le_PjENIzknxnhIrGXiqcQilzBySYOcA-ddm2XNx_HP2n3GpavZQOLASYtw0kzZdRJEnAmA6XscOO2KabKxB0UXWG64TkT2qpQ-9XxUS0bXdytQn_7-zc_wlkdWR8KcwG612uAXeGOeqvv1akASvbgcWIl-AS-o8AI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQ9lEeBbilgJG4QGjvOGh-XLlUR22UlFtRb5DgTUQmS1W4WiX_PjPNQD4DEJYrkR6x8Y3vGM_4G4GWh8lzF1kVjTB0bKGXkrMkjw9p1brxJA8_215mZz99eXtrFDrwe7sIgYgg-wzf8Gnz5Re23fFR2YpUcp8regJup1kq2t7X6dZc28pACmTUSZvJO-ysysT1ZvjudfCZjUJGNyq61hBPWkCWvxpaTKF_bkUKKlb9rm2HXObv7f-O9B_uddikmrTjchx2sHsDeNc7BA1h9qqIp8vogOBy5pen-JSYDQ6dwVSEWa3bgMGiiLsUFoUONxeJb3XDAOYP7o-W6vvJi6honQuiBmCKuBPN90CDmbYD55iF8OXu_PD2PurQLkU9S2UQJqrJwaByZXilab3MnMTjknHFOo3ZJaZDKaKfXRSIdLffey5JUT6_pmTyC3aqu8BBETsoJHwrHYx9r46XTvsjLnFoysXyZjkD2vz7zHSc5p8b4ngXbJLZZQC5j5LIOuRG8GtqsWkaOf9Y-YFyGmh0kIzjuEc66SbvJlOZcAEzgM4IXQzFNN_ahuArrLdfRZLEaI6nnx61kDH33AnX0528-h9vny4tZNvsw__gE7vAo27iYY9ht1lt8Crf8z-Zqs34W5Po3J0ryYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Device+Reliability+Assessment+and+Prediction+of+Missing+Photoplethysmographic+Data+Using+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Singha+Roy%2C+Monalisa&rft.au=Roy%2C+Biplab&rft.au=Gupta%2C+Rajarshi&rft.au=Das+Sharma%2C+Kaushik&rft.date=2020-12-01&rft.eissn=1940-9990&rft.volume=14&rft.issue=6&rft.spage=1323&rft_id=info:doi/10.1109%2FTBCAS.2020.3028935&rft_id=info%3Apmid%2F33026985&rft.externalDocID=33026985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon