Efficient Numerical Solution of the EMI Model Representing the Extracellular Space (E), Cell Membrane (M) and Intracellular Space (I) of a Collection of Cardiac Cells

The EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The increased complexity of solving the EMI model stems from a significant increase in the number of computational nodes and from the form of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in physics Ročník 8
Hlavní autori: Jæger, Karoline Horgmo, Hustad, Kristian Gregorius, Cai, Xing, Tveito, Aslak
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 13.01.2021
Predmet:
ISSN:2296-424X, 2296-424X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The increased complexity of solving the EMI model stems from a significant increase in the number of computational nodes and from the form of the linear systems that need to be solved. Here, we will show that the latter problem can be solved by careful use of operator splitting of the spatially coupled equations. By using this method, the linear systems can be broken into sub-problems that are of the classical type of linear, elliptic boundary value problems. Therefore, the vast collection of methods for solving linear, elliptic partial differential equations can be used. We demonstrate that this enables us to solve the systems using shared-memory parallel computers. The computing time scales perfectly with the number of physical cells. For a collection of 512 × 256 cells, we solved linear systems with about 2.5 × 10 8 unknows. Since the computational effort scales linearly with the number of physical cells, we believe that larger computers can be used to simulate millions of excitable cells and thus allow careful analysis of physiological systems of great importance.
AbstractList The EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The increased complexity of solving the EMI model stems from a significant increase in the number of computational nodes and from the form of the linear systems that need to be solved. Here, we will show that the latter problem can be solved by careful use of operator splitting of the spatially coupled equations. By using this method, the linear systems can be broken into sub-problems that are of the classical type of linear, elliptic boundary value problems. Therefore, the vast collection of methods for solving linear, elliptic partial differential equations can be used. We demonstrate that this enables us to solve the systems using shared-memory parallel computers. The computing time scales perfectly with the number of physical cells. For a collection of 512 × 256 cells, we solved linear systems with about 2.5 × 10 8 unknows. Since the computational effort scales linearly with the number of physical cells, we believe that larger computers can be used to simulate millions of excitable cells and thus allow careful analysis of physiological systems of great importance.
The EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The increased complexity of solving the EMI model stems from a significant increase in the number of computational nodes and from the form of the linear systems that need to be solved. Here, we will show that the latter problem can be solved by careful use of operator splitting of the spatially coupled equations. By using this method, the linear systems can be broken into sub-problems that are of the classical type of linear, elliptic boundary value problems. Therefore, the vast collection of methods for solving linear, elliptic partial differential equations can be used. We demonstrate that this enables us to solve the systems using shared-memory parallel computers. The computing time scales perfectly with the number of physical cells. For a collection of 512 × 256 cells, we solved linear systems with about 2.5×108 unknows. Since the computational effort scales linearly with the number of physical cells, we believe that larger computers can be used to simulate millions of excitable cells and thus allow careful analysis of physiological systems of great importance.
Author Tveito, Aslak
Cai, Xing
Jæger, Karoline Horgmo
Hustad, Kristian Gregorius
Author_xml – sequence: 1
  givenname: Karoline Horgmo
  surname: Jæger
  fullname: Jæger, Karoline Horgmo
– sequence: 2
  givenname: Kristian Gregorius
  surname: Hustad
  fullname: Hustad, Kristian Gregorius
– sequence: 3
  givenname: Xing
  surname: Cai
  fullname: Cai, Xing
– sequence: 4
  givenname: Aslak
  surname: Tveito
  fullname: Tveito, Aslak
BookMark eNp1kVtr3DAQhUVJoLm991GPWchudfHa1mMx29SQbSAX6JsYSaNEQWstsheSP9TfGTvbQAntk4ajOWek-Y7JQZc6JOQLZwspa_XVbx9fFoIJtlhWqij5J3IkhCrnhSh-HfxVfyZnff_EGONiqWpRHJHfK--DDdgN9OdugzlYiPQ2xd0QUkeTp8Mj0tW6pevkMNIb3Gbsx-7QPeyvnocMFmPcRcj0djvW9Hw1u6DNqNE1bkyGbpTWMwqdo233j_Z2Ng0C2qQY0b4PbiC7APYtqD8lhx5ij2d_zhNy_3111_yYX11fts23q7mVSz7MJRi2LLAqZAGWlzVAWTkuJas9eFbbynPjnPFMSOWs8sa7SgrwYM20DytPSLvPdQme9DaHDeQXnSDoNyHlBw15CDai5kpWlRG1cKoukDlVORTGoMeRiAIcs8p9ls2p7zN6bcMA0_fGHYSoOdMTPD3B0xM8vYc3GtkH4_tD_mt5BRWjoLg
CitedBy_id crossref_primary_10_1007_s10915_023_02435_8
crossref_primary_10_1016_j_cma_2024_117501
crossref_primary_10_1038_s41598_024_67431_w
crossref_primary_10_14814_phy2_70461
crossref_primary_10_1113_JP282105
crossref_primary_10_1007_s10915_023_02449_2
crossref_primary_10_1016_j_enganabound_2023_10_021
crossref_primary_10_1016_j_cma_2025_118001
crossref_primary_10_1038_s41598_023_43444_9
crossref_primary_10_1038_s41598_022_11110_1
crossref_primary_10_3389_fphys_2021_811029
crossref_primary_10_1038_s41540_024_00406_9
crossref_primary_10_1137_22M1542532
crossref_primary_10_3389_fphys_2022_904648
crossref_primary_10_1007_s10237_022_01660_8
crossref_primary_10_1137_23M1580632
crossref_primary_10_1371_journal_pcbi_1013149
crossref_primary_10_3389_fphy_2025_1569121
crossref_primary_10_1137_24M1644717
crossref_primary_10_1371_journal_pcbi_1009233
crossref_primary_10_1137_24M1653367
crossref_primary_10_3389_fphys_2021_763584
crossref_primary_10_3389_fphys_2022_834211
crossref_primary_10_1038_s41540_023_00288_3
Cites_doi 10.1103/physreve.67.051925
10.1088/1741-2560/10/2/026019
10.3389/fphys.2012.00345
10.1016/j.pbiomolbio.2007.07.009
10.1529/biophysj.108.137349
10.1152/ajpheart.00760.2013
10.1137/15m1026419
10.1111/j.1540-8159.2006.00382.x
10.1007/s10439-007-9337-3
10.1109/tbme.2006.889172
10.1137/110838844
10.1007/s10439-005-7257-7
10.1063/1.166300
10.1016/j.bpj.2010.12.3716
10.1109/10.184699
10.1007/s10439-009-9883-y
10.1017/s0962492915000021
10.1007/978-3-319-04801-7
10.1016/j.yjmcc.2009.09.019
10.1006/jcph.2002.7176
10.1002/nla.501
10.1016/j.cam.2015.02.011
10.1016/j.pbiomolbio.2015.12.011
10.1109/TBME.2012.2205575
10.1371/journal.pcbi.1007042
10.3389/fncom.2017.00027
10.1016/s0377-0427(00)00516-1
10.3389/fphys.2011.00014
10.1109/tbme.2009.2014739
10.1161/01.res.0000046237.54156.0a
10.1137/17m1137061
10.1016/s0006-3495(94)80971-3
10.1002/nla.716
10.1152/ajpheart.00868.2011
10.1145/1089014.1089017
10.3389/fphy.2017.00048
10.1155/2010/503906
10.1161/01.res.86.3.302
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2020.579461
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_19377b282d984e0d97de2bbefe3899ae
10_3389_fphy_2020_579461
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c351t-3ab054e7434ac168aa67d13308faf08c7f1bddbf0239dc9fbfd732afacb5982c3
IEDL.DBID DOA
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612164200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-424X
IngestDate Fri Oct 03 12:51:46 EDT 2025
Sat Nov 29 02:18:05 EST 2025
Tue Nov 18 22:18:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3ab054e7434ac168aa67d13308faf08c7f1bddbf0239dc9fbfd732afacb5982c3
OpenAccessLink https://doaj.org/article/19377b282d984e0d97de2bbefe3899ae
ParticipantIDs doaj_primary_oai_doaj_org_article_19377b282d984e0d97de2bbefe3899ae
crossref_citationtrail_10_3389_fphy_2020_579461
crossref_primary_10_3389_fphy_2020_579461
PublicationCentury 2000
PublicationDate 2021-01-13
PublicationDateYYYYMMDD 2021-01-13
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-13
  day: 13
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B43
Franzone (B1) 2014
B44
Marsh (B35) 2012; 59
Whiteley (B3) 2007; 35
Tsumoto (B21) 2011; 100
Sundnes (B2) 2006
Niederer (B26) 2011; 2
Roth (B45) 2003; 67
Liu (B28) 2008; 96
Wathen (B32) 2015; 24
Tveito (B8) 2017; 5
Csepe (B27) 2016; 120
Sundnes (B34) 2009; 56
Agudelo-Toro (B14) 2013; 10
Li (B37) 2005; 31
Jæger (B47) 2020
Mardal (B4) 2007; 14
Veeraraghavan (B24) 2012; 302
Krassowska (B12) 1994; 66
Cervi (B6) 2018; 40
Stinstra (B19) 2005; 33
Tveito (B10) 2017; 11
Hogues (B11) 1992; 39
Stinstra (B16) 2009
Stinstra (B17) 2010; 38
Stinstra (B18) 2006
Bangerth (B36) 2020
Veeraraghavan (B25) 2014; 306
Jæger (B48) 2020
Stüben (B38) 2001; 128
Spach (B23) 2000; 86
Mele (B30) 2020
Louch (B22) 2010; 2010
Benzi (B29) 2002; 182
Hake (B41)
Jæger (B9) 2019; 15
Grandi (B33) 2010; 48
Ottino (B7) 2015; 285
Mardal (B31) 2011; 18
Rupp (B39) 2016; 38
Beaudoin (B46) 2006; 29
Linge (B5) 1895; 367
Roberts (B15) 2008; 95
Bell (B40) 2012; 34
Ying (B13) 2007; 54
Kucera (B20) 2002; 91
Kaese (B42) 2012; 3
References_xml – volume: 67
  start-page: 051925
  year: 2003
  ident: B45
  article-title: Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers
  publication-title: Phys Rev
  doi: 10.1103/physreve.67.051925
– volume: 10
  start-page: 026019
  year: 2013
  ident: B14
  article-title: Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/2/026019
– ident: B43
– start-page: 1
  volume-title: Modeling excitable tissue.
  year: 2020
  ident: B47
  article-title: Derivation of a Cell-Based Mathematical Model of Excitable Cells
– start-page: 41
  volume-title: Computers in cardiology
  year: 2006
  ident: B18
  article-title: A model of 3D propagation in discrete cardiac tissue
– volume: 3
  start-page: 345
  year: 2012
  ident: B42
  article-title: Cardiac electrophysiology in mice: a matter of size
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00345
– volume: 96
  start-page: 294
  year: 2008
  ident: B28
  article-title: Role of pacemaking current in cardiac nodes: insights from a comparative study of sinoatrial node and atrioventricular node
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2007.07.009
– volume: 95
  start-page: 3724
  year: 2008
  ident: B15
  article-title: Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model
  publication-title: Biophys J
  doi: 10.1529/biophysj.108.137349
– volume: 306
  start-page: H619
  year: 2014
  ident: B25
  article-title: Mechanisms of cardiac conduction: a history of revisions
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00760.2013
– volume-title: Preconditioning for linear systems
  year: 2020
  ident: B30
– volume: 38
  start-page: S412
  year: 2016
  ident: B39
  article-title: ViennaCL—Linear algebra library for multi- and many-core architectures
  publication-title: SIAM J Sci Comput
  doi: 10.1137/15m1026419
– volume: 29
  start-page: 496
  year: 2006
  ident: B46
  article-title: The effect of the fiber curvature gradient on break excitation in cardiac tissue
  publication-title: Pacing clin electrophysiol
  doi: 10.1111/j.1540-8159.2006.00382.x
– volume: 35
  start-page: 1510
  year: 2007
  ident: B3
  article-title: Physiology driven adaptivity for the numerical solution of the bidomain equations
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-007-9337-3
– volume: 54
  start-page: 611
  year: 2007
  ident: B13
  article-title: Hybrid finite element method for describing the electrical response of biological cells to applied fields
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2006.889172
– volume: 34
  start-page: C123
  year: 2012
  ident: B40
  article-title: Exposing fine-grained parallelism in algebraic multigrid methods
  publication-title: SIAM J Sci Comput
  doi: 10.1137/110838844
– volume: 33
  start-page: 1743
  year: 2005
  ident: B19
  article-title: On the passive cardiac conductivity
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-005-7257-7
– volume: 367
  start-page: 1931
  year: 1895
  ident: B5
  article-title: Numerical solution of the bidomain equations
  publication-title: Phil Trans Roy Soc Lond
  doi: 10.1063/1.166300
– volume: 100
  start-page: 554
  year: 2011
  ident: B21
  article-title: Roles of subcellular Na + channel distributions in the mechanism of cardiac conduction
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.12.3716
– volume: 39
  start-page: 1232
  year: 1992
  ident: B11
  article-title: A model study of electric field interactions between cardiac myocytes
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.184699
– volume-title: Finite element methods in scientific computing
  year: 2020
  ident: B36
– volume: 38
  start-page: 1399
  year: 2010
  ident: B17
  article-title: Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9883-y
– volume: 24
  start-page: 329
  year: 2015
  ident: B32
  article-title: Preconditioning
  publication-title: Acta Numerica
  doi: 10.1017/s0962492915000021
– start-page: 397
  volume-title: Mathematical cardiac electrophysiology.
  year: 2014
  ident: B1
  doi: 10.1007/978-3-319-04801-7
– volume: 48
  start-page: 112
  year: 2010
  ident: B33
  article-title: A novel computational model of the human ventricular action potential and Ca transient
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2009.09.019
– volume: 182
  start-page: 418
  year: 2002
  ident: B29
  article-title: Preconditioning techniques for large linear systems: a survey
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.7176
– volume: 14
  start-page: 83
  year: 2007
  ident: B4
  article-title: An order optimal solver for the discretized bidomain equations
  publication-title: Numer Lin Algebra Appl
  doi: 10.1002/nla.501
– volume-title: Gotran–general ODE TRANslator
  ident: B41
– volume: 285
  start-page: 151
  year: 2015
  ident: B7
  article-title: Bpx preconditioners for the bidomain model of electrocardiology
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.02.011
– volume: 120
  start-page: 14
  year: 2016
  ident: B27
  article-title: Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2015.12.011
– start-page: 318
  volume-title: Computing the electrical activity of the heart.
  year: 2006
  ident: B2
– volume: 59
  start-page: 2506
  year: 2012
  ident: B35
  article-title: The secrets to the success of the Rush–Larsen method and its generalizations
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2205575
– volume: 15
  start-page: e1007042
  year: 2019
  ident: B9
  article-title: Properties of cardiac conduction in a cell-based computationalmodel
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007042
– ident: B44
– volume: 11
  start-page: 27
  year: 2017
  ident: B10
  article-title: An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2017.00027
– volume: 128
  start-page: 281
  year: 2001
  ident: B38
  article-title: A review of algebraic multigrid
  publication-title: J Comput Appl Math
  doi: 10.1016/s0377-0427(00)00516-1
– start-page: 657
  volume-title: Computers in cardiology
  year: 2009
  ident: B16
  article-title: Comparison of microscopic and bidomain models of anisotropic conduction
– start-page: 44
  volume-title: Modeling Excitable Tissue.
  year: 2020
  ident: B48
  article-title: Operator Splitting and Finite Difference Schemes for Solving the EMI Model
– volume: 2
  start-page: 1
  year: 2011
  ident: B26
  article-title: Simulating human cardiac electrophysiology on clinical time-scales
  publication-title: Front Physiol
  doi: 10.3389/fphys.2011.00014
– volume: 56
  start-page: 2546
  year: 2009
  ident: B34
  article-title: A second-order algorithm for solving dynamic cell membrane equations
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2009.2014739
– volume: 91
  start-page: 1176
  year: 2002
  ident: B20
  article-title: Localization of sodium channels in intercalated disks modulates cardiac conduction
  publication-title: Circ Res
  doi: 10.1161/01.res.0000046237.54156.0a
– volume: 40
  start-page: A769
  year: 2018
  ident: B6
  article-title: High-order operator splitting for the bidomain and monodomain models
  publication-title: SIAM J Sci Comput
  doi: 10.1137/17m1137061
– volume: 66
  start-page: 1768
  year: 1994
  ident: B12
  article-title: Response of a single cell to an external electric field
  publication-title: Biophys J
  doi: 10.1016/s0006-3495(94)80971-3
– volume: 18
  start-page: 1
  year: 2011
  ident: B31
  article-title: Preconditioning discretizations of systems of partial differential equations
  publication-title: Numer Lin Algebra Appl
  doi: 10.1002/nla.716
– volume: 302
  start-page: H278
  year: 2012
  ident: B24
  article-title: Interstitial volume modulates the conduction velocity-gap junction relationship
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00868.2011
– volume: 31
  start-page: 302
  year: 2005
  ident: B37
  article-title: An overview of SuperLU
  publication-title: ACM Trans Math Software
  doi: 10.1145/1089014.1089017
– volume: 5
  start-page: 48
  year: 2017
  ident: B8
  article-title: A cell-based framework for numerical modeling of electrical conduction in cardiac tissue
  publication-title: Front Phys
  doi: 10.3389/fphy.2017.00048
– volume: 2010
  start-page: 503906
  year: 2010
  ident: B22
  article-title: There goes the neighborhood: pathological alterations in t-tubule morphology and consequences for cardiomyocyte Ca2+ handling
  publication-title: BioMed Res Int
  doi: 10.1155/2010/503906
– volume: 86
  start-page: 302
  year: 2000
  ident: B23
  article-title: Electrophysiological effects of remodeling cardiac gap junctions and cell size
  publication-title: Circ Res
  doi: 10.1161/01.res.86.3.302
SSID ssj0001259824
Score 2.3134604
Snippet The EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms cardiac conduction
cell modeling
electrophysiological model
finite difference method
operator splitting algorithm
Title Efficient Numerical Solution of the EMI Model Representing the Extracellular Space (E), Cell Membrane (M) and Intracellular Space (I) of a Collection of Cardiac Cells
URI https://doaj.org/article/19377b282d984e0d97de2bbefe3899ae
Volume 8
WOSCitedRecordID wos000612164200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSysxEA8iCu8ifjx5fpKDBwtv7Sa7bXaPWlos2CLvKXhbkkwCQl2lreLJP8e_05mklQqiFy97yGaTMDNs5jeZ_IaxI0klkASIJGt5SHLwraQwLk0AciFTR4glUOZfqOGwuLkpLxdKfVFOWKQHjoJrooOhlEFgAGWRuxRKBU4a47wjZjjt6O-bqnIBTMXoChHT5fFcElFY2fS4aoSDMj1pEae6-LAPLdD1h32lt87WZg4hP40L2WBLrt5kqyEx00622Gs3cDzg1sCHj_F0ZcTnsSx-7zk6cBxlyamo2Yj_C4mtLpR_iK-ep2NN0XlKN-X_ESE7ftxt_OUdbOMDd4doucamQYPrGni__qR7v0ETaR6CDHY-cSfYlg0DTX6z6173qnOezGorJDZriWmSaYPOmkP_IddWtAut2woQr6aF1z4trPLCABhPd1_Blt54UJnUXltDkrXZNluu72v3h3EtNZSuAJk5mbetMB71pXPQbatAm2yHNeeSruyMeJzqX4wqBCCkm4p0U5FuqqibHdZ4_-Ihkm580feMlPfej-iyQwMaUTUzouo7I9r9iUH22C9JCS-pSES2z5an40d3wFbs0_R2Mj4M9onPwUv3DcaP7T0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Numerical+Solution+of+the+EMI+Model+Representing+the+Extracellular+Space+%28E%29%2C+Cell+Membrane+%28M%29+and+Intracellular+Space+%28I%29+of+a+Collection+of+Cardiac+Cells&rft.jtitle=Frontiers+in+physics&rft.au=J%C3%A6ger%2C+Karoline+Horgmo&rft.au=Hustad%2C+Kristian+Gregorius&rft.au=Cai%2C+Xing&rft.au=Tveito%2C+Aslak&rft.date=2021-01-13&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphy.2020.579461&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphy_2020_579461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon