Toward the Optimal Design and FPGA Implementation of Spiking Neural Networks
The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (F...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 33; no. 8; pp. 3988 - 4002 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (FPGA) online learning neuromorphic platform for the digital implementation based on two numerical methods, namely, the Euler and third-order Runge-Kutta (RK3) methods. The optimization scheme explores the impact of biological time constants on information transmission in the SNN and improves the convergence rate of the SNN on digit recognition with a suitable choice of the time constants. The parallel digital implementation leads to a significant speedup over software simulation on a general-purpose CPU. The parallel implementation with the Euler method enables around <inline-formula> <tex-math notation="LaTeX">180\times </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">20\times </tex-math></inline-formula>) training (inference) speedup over a Pytorch-based SNN simulation on CPU. Moreover, compared with previous work, our parallel implementation shows more than <inline-formula> <tex-math notation="LaTeX">300\times </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">240\times </tex-math></inline-formula>) improvement on speed and <inline-formula> <tex-math notation="LaTeX">180\times </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">250\times </tex-math></inline-formula>) reduction in energy consumption for training (inference). In addition, due to the high-order accuracy, the RK3 method is demonstrated to gain <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> training speedup over the Euler method, which makes it suitable for online training in real-time applications. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2021.3055421 |