Multiple Structure-View Learning for Graph Classification

Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph sett...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 7; s. 3236 - 3251
Hlavní autori: Wu, Jia, Pan, Shirui, Zhu, Xingquan, Zhang, Chengqi, Yu, Philip S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.
AbstractList Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.
Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.
Author Wu, Jia
Pan, Shirui
Zhang, Chengqi
Yu, Philip S.
Zhu, Xingquan
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0002-1371-5801
  surname: Wu
  fullname: Wu, Jia
  email: jia.wu@mq.edu.au
  organization: Department of Computing, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
– sequence: 2
  givenname: Shirui
  surname: Pan
  fullname: Pan, Shirui
  email: shirui.pan@uts.edu.au
  organization: Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 3
  givenname: Xingquan
  surname: Zhu
  fullname: Zhu, Xingquan
  email: xzhu3@fau.edu
  organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
– sequence: 4
  givenname: Chengqi
  orcidid: 0000-0001-5715-7154
  surname: Zhang
  fullname: Zhang, Chengqi
  email: chengqi.zhang@uts.edu.au
  organization: Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 5
  givenname: Philip S.
  orcidid: 0000-0002-3491-5968
  surname: Yu
  fullname: Yu, Philip S.
  email: psyu@cs.uic.edu
  organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28945603$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi0Eonz0D4CEIrGwpNz5I7FHVEFBKjBQEJvlGAeM0qTYiRD_nkBLhw7ccjc8793p2SfbdVM7Qo4QRoigzmd3d9OHEQXMRzQHJhndInsUM5pSJuX2es6fB2QY4zv0lYHIuNolAyoVFxmwPaJuu6r1i8olD23obNsFlz5595lMnQm1r1-TsgnJJJjFWzKuTIy-9Na0vqkPyU5pquiGq35AHq8uZ-PrdHo_uRlfTFPLBLYpA4kGBcuFAVYwbrMX4CiBOku5xYIpI0AUJQBVeV6iQKSFtaZEsKVDzg7I2XLvIjQfnYutnvtoXVWZ2jVd1Kg4o5KDYj16uoG-N12o--80BaEozfIs66mTFdUVc_eiF8HPTfjSf1J6gC4BG5oYgyvXCIL-ka9_5esf-Xolvw_JjZD17a-oNhhf_R89Xka9c259SwLPuUT2DfabjtU
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3137396
crossref_primary_10_1109_ACCESS_2017_2782884
crossref_primary_10_1109_ACCESS_2018_2817845
crossref_primary_10_1109_TNSE_2022_3177307
crossref_primary_10_1155_2017_1490283
crossref_primary_10_1109_TKDE_2020_3048678
crossref_primary_10_1155_2018_3502508
crossref_primary_10_1155_2017_4783159
crossref_primary_10_1109_ACCESS_2017_2730218
crossref_primary_10_1155_2018_8425821
crossref_primary_10_1007_s00521_018_3766_9
crossref_primary_10_1109_TNNLS_2022_3195336
crossref_primary_10_1155_2017_8584252
crossref_primary_10_1109_ACCESS_2017_2731872
crossref_primary_10_1109_TKDE_2022_3144083
crossref_primary_10_1155_2018_4185279
crossref_primary_10_1109_ACCESS_2017_2785790
Cites_doi 10.1109/ICDM.2011.119
10.1145/2601412
10.1109/TNN.2011.2109011
10.1137/1.9781611972832.10
10.1109/DICTA.2011.77
10.1007/978-3-540-24775-3_35
10.1145/1148170.1148254
10.1109/ICDM.2003.1250974
10.1007/11564089_7
10.1145/1835804.1835905
10.1007/s11063-005-2192-z
10.1137/1.9781611972795.92
10.1145/2641190.2641196
10.1109/TNNLS.2015.2424254
10.1016/j.patcog.2014.07.022
10.1109/TNNLS.2013.2254721
10.1109/TASE.2010.2094608
10.1109/TSMCB.2012.2192108
10.1145/1401890.1401961
10.1109/TSMCB.2011.2106208
10.1145/2020408.2020511
10.1109/TNNLS.2015.2498149
10.1007/s10115-011-0407-3
10.1140/epjb/e2015-50742-1
10.1093/bioinformatics/btl301
10.1109/TPAMI.2006.248
10.1007/s10115-015-0872-1
10.1137/1.9781611972832.30
10.1109/TSMCB.2012.2201468
10.1007/s00521-012-1015-1
10.1109/TCYB.2016.2527239
10.1109/ICDM.2010.126
10.1145/1458082.1458212
10.1109/TKDE.2013.2297923
10.1007/978-3-319-10599-4_11
10.1109/TPAMI.2012.120
10.1023/B:NEPL.0000016836.03614.9f
10.1109/ICDE.2014.6816696
10.1186/2193-1801-3-116
10.1109/TCYB.2014.2327111
10.1016/S0004-3702(96)00034-3
10.1007/978-3-642-25832-9_5
10.1109/TPAMI.2007.70847
10.1109/TKDE.2009.58
10.1145/1376616.1376662
10.1007/s10115-007-0114-2
10.1109/TNNLS.2016.2519102
10.1109/TCYB.2016.2526058
10.1109/ICDM.2013.121
10.1109/TCYB.2014.2341031
10.1109/CVPR.2007.383049
10.1145/2396761.2396791
10.1017/S0269888912000331
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2703832
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3251
ExternalDocumentID 28945603
10_1109_TNNLS_2017_2703832
8047481
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: IIS-1526499; CNS-1115234; CNS-1626432
  funderid: 10.13039/100006445
– fundername: Australian Research Council Discovery Projects
  grantid: DP140100545; DP140102206
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-3081a15375a03b34c6d041802ec24c1b39a505bf002977f15112bccaf10cfe143
IEDL.DBID RIE
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436420400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 00:55:14 EDT 2025
Sun Nov 09 06:41:45 EST 2025
Thu Jan 02 23:00:29 EST 2025
Tue Nov 18 22:00:29 EST 2025
Sat Nov 29 01:39:58 EST 2025
Wed Aug 27 02:50:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3081a15375a03b34c6d041802ec24c1b39a505bf002977f15112bccaf10cfe143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1371-5801
0000-0001-5715-7154
0000-0002-3491-5968
PMID 28945603
PQID 2059226766
PQPubID 85436
PageCount 16
ParticipantIDs pubmed_primary_28945603
proquest_miscellaneous_1943284093
ieee_primary_8047481
proquest_journals_2059226766
crossref_primary_10_1109_TNNLS_2017_2703832
crossref_citationtrail_10_1109_TNNLS_2017_2703832
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref10
zhou (ref8) 2004
ref16
ref19
ref18
yan (ref17) 2002
ref51
ref50
xu (ref43) 2003
ref46
pan (ref29) 2015; 45
ref48
ref47
ref41
nash (ref54) 1996
ref44
ref49
ref9
ref4
ref3
wang (ref34) 2000
ref6
ref5
kivelä (ref63) 2015
ref40
fu (ref7) 2013; 24
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
wu (ref53) 2015
mayo (ref12) 2011
ref22
ref21
ref28
ref27
telgarsky (ref42) 2012; 13
fu (ref45) 2010; 33
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1109/ICDM.2011.119
– ident: ref4
  doi: 10.1145/2601412
– ident: ref46
  doi: 10.1109/TNN.2011.2109011
– ident: ref25
  doi: 10.1137/1.9781611972832.10
– ident: ref5
  doi: 10.1109/DICTA.2011.77
– ident: ref41
  doi: 10.1007/978-3-540-24775-3_35
– ident: ref6
  doi: 10.1145/1148170.1148254
– ident: ref18
  doi: 10.1109/ICDM.2003.1250974
– ident: ref27
  doi: 10.1007/11564089_7
– ident: ref1
  doi: 10.1145/1835804.1835905
– ident: ref40
  doi: 10.1007/s11063-005-2192-z
– ident: ref22
  doi: 10.1137/1.9781611972795.92
– ident: ref3
  doi: 10.1145/2641190.2641196
– ident: ref38
  doi: 10.1109/TNNLS.2015.2424254
– ident: ref37
  doi: 10.1016/j.patcog.2014.07.022
– volume: 24
  start-page: 1377
  year: 2013
  ident: ref7
  article-title: Learning sparse kernel classifiers for multi-instance classification
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2254721
– ident: ref55
  doi: 10.1109/TASE.2010.2094608
– start-page: 3953
  year: 2015
  ident: ref53
  article-title: Multi-graph-view learning for complicated object classification
  publication-title: Proc IJCAI
– ident: ref49
  doi: 10.1109/TSMCB.2012.2192108
– ident: ref21
  doi: 10.1145/1401890.1401961
– ident: ref48
  doi: 10.1109/TSMCB.2011.2106208
– ident: ref24
  doi: 10.1145/2020408.2020511
– ident: ref15
  doi: 10.1109/TNNLS.2015.2498149
– start-page: 721
  year: 2002
  ident: ref17
  article-title: gSpan: Graph-based substructure pattern mining
  publication-title: Proc ICDM
– ident: ref26
  doi: 10.1007/s10115-011-0407-3
– ident: ref16
  doi: 10.1140/epjb/e2015-50742-1
– ident: ref31
  doi: 10.1093/bioinformatics/btl301
– ident: ref44
  doi: 10.1109/TPAMI.2006.248
– ident: ref11
  doi: 10.1007/s10115-015-0872-1
– volume: 13
  start-page: 561
  year: 2012
  ident: ref42
  article-title: A primal-dual convergence analysis of boosting
  publication-title: J Mach Learn Res
– ident: ref52
  doi: 10.1137/1.9781611972832.30
– ident: ref36
  doi: 10.1109/TSMCB.2012.2201468
– ident: ref50
  doi: 10.1007/s00521-012-1015-1
– ident: ref59
  doi: 10.1109/TCYB.2016.2527239
– ident: ref61
  doi: 10.1109/ICDM.2010.126
– ident: ref19
  doi: 10.1145/1458082.1458212
– volume: 33
  start-page: 958
  year: 2010
  ident: ref45
  article-title: MILIS: Multiple instance learning with instance selection
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref9
  doi: 10.1109/TKDE.2013.2297923
– ident: ref58
  doi: 10.1007/978-3-319-10599-4_11
– ident: ref57
  doi: 10.1109/TPAMI.2012.120
– ident: ref39
  doi: 10.1023/B:NEPL.0000016836.03614.9f
– ident: ref14
  doi: 10.1109/ICDE.2014.6816696
– ident: ref32
  doi: 10.1186/2193-1801-3-116
– ident: ref10
  doi: 10.1109/TCYB.2014.2327111
– ident: ref33
  doi: 10.1016/S0004-3702(96)00034-3
– year: 1996
  ident: ref54
  publication-title: Linear and Nonlinear Programming
– year: 2004
  ident: ref8
  article-title: Multi-instance learning: A survey
– year: 2015
  ident: ref63
  publication-title: Isomorphisms in multilayer networks
– ident: ref35
  doi: 10.1007/978-3-642-25832-9_5
– ident: ref56
  doi: 10.1109/TPAMI.2007.70847
– start-page: 363
  year: 2011
  ident: ref12
  article-title: Experiments with multi-view multi-instance learning for supervised image classification
  publication-title: J Proc of IVCNZ
– ident: ref62
  doi: 10.1109/TKDE.2009.58
– year: 2003
  ident: ref43
  article-title: Statistical learning in multiple instance problems
– ident: ref20
  doi: 10.1145/1376616.1376662
– ident: ref13
  doi: 10.1007/s10115-007-0114-2
– ident: ref47
  doi: 10.1109/TNNLS.2016.2519102
– ident: ref30
  doi: 10.1109/TCYB.2016.2526058
– start-page: 1119
  year: 2000
  ident: ref34
  article-title: Solving multiple-instance problem: A lazy learning approach
  publication-title: Proc ICML
– ident: ref51
  doi: 10.1109/ICDM.2013.121
– volume: 45
  start-page: 954
  year: 2015
  ident: ref29
  article-title: Graph ensemble boosting for imbalanced noisy graph stream classification
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2341031
– ident: ref2
  doi: 10.1109/CVPR.2007.383049
– ident: ref23
  doi: 10.1145/2396761.2396791
– ident: ref60
  doi: 10.1017/S0269888912000331
SSID ssj0000605649
Score 2.49573
Snippet Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3236
SubjectTerms Chemical compounds
Classification
Correlation
Graph
graph classification
Graphical representations
Graphs
Image color analysis
Labels
Learning
Learning systems
Machine learning
multiview learning
Periodic structures
Proteins
Regularization
subgraph mining
Visualization
Title Multiple Structure-View Learning for Graph Classification
URI https://ieeexplore.ieee.org/document/8047481
https://www.ncbi.nlm.nih.gov/pubmed/28945603
https://www.proquest.com/docview/2059226766
https://www.proquest.com/docview/1943284093
Volume 29
WOSCitedRecordID wos000436420400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7qKg5cxo-yLVBQJnHbXOzYteMjQhQOrEKCTb1Fju1MSKidKIV_n2fHyYlN2i1S7MTy92x_tt_7HsBp2QjjrTFEOE4JzpIFqbnSpORGOs6kd62I642az8vFQt8O4HsfC-O9j85nfhIe412-W9lNOCo7K6lQIsRZf1BKtrFa_XkKRV4uI9stmCxIwdWii5Gh-ux-Pr-5C45calKgjaMZBxXgUiN96NJlpSUp5lj5O92My85s5_8avAsfE73Mz1t72IOBX-7DTpe6IU8jeQT6R3IkzO-igOzmyZNfD_41T3qrv3Mks_lVULPOY97M4FEUQTyAn7PL-4trkrIoEMun7JlwXPQNzmtqaiivubDSURF037wthGU11wZZUN3ENFaqYYGB1Yhrw6htPNKpTzBcrpb-C-RGW-OE9sxIKlxhS8eFE8KYhjcN5TYD1nVkZZPEeMh08VjFrQbVVcShCjhUCYcMvvV1_rQCG_8sPQq93JdMHZzBuMOrSmNwjfWmGsmlkjKDr_1rHD3hSsQs_WqzrpgWvAh7XJ7B5xbn_tudeRy-_88j2MaWla3r7hiGiJY_hi378vywfjpBE12UJ9FE3wA7H94N
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7IFPTi_G11agVvmpk0WdscRZyKswibsltJk1QE2cQ5_fdN0rQnFbwVmrQh30vyJXnvfQAnacmElkIgpihGZpaMUEETjlIqYkVJrFWVxHWQZFk6HvOHBThrYmG01s75THfto7vLV1M5t0dl5ylmCbNx1otWOctHazUnKtgw89jx3YjEEYpoMq6jZDA_H2XZYGhduZJuZKzcGLLNA5xyQyBqwSy_KDmVld8Jp1t4-u3_NXkNVj3BDC8qi1iHBT3ZgHYt3hD6sbwJ_N67EoZDl0J2_q7R04v-Cn3G1efQ0Nnw2uazDp1ypvUpcjBuwWP_anR5g7yOApK0Rz4QNcu-MDNb0hOYFpTJWGFmM79pGTFJCsqF4UFF6YSskpJYDlYYZEuCZakNodqG1mQ60bsQCi6FYlwTEWOmIpkqyhRjQpS0LDGVAZC6I3Ppk4xbrYvX3G02MM8dDrnFIfc4BHDa1HmrUmz8WXrT9nJT0ndwAJ0ar9yPwpmp1-OGXiZxHMBx89qMH3spIiZ6Op_lhDMa2V0uDWCnwrn5dm0eez__8wiWb0b3g3xwm93tw4ppZVo58nagZZDTB7AkPz9eZu-HzlC_Abru4G4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Structure-View+Learning+for+Graph+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wu%2C+Jia&rft.au=Pan%2C+Shirui&rft.au=Zhu%2C+Xingquan&rft.au=Zhang%2C+Chengqi&rft.date=2018-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=7&rft.spage=3236&rft_id=info:doi/10.1109%2FTNNLS.2017.2703832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon