Multiple Structure-View Learning for Graph Classification
Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph sett...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 29; číslo 7; s. 3236 - 3251 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches. |
|---|---|
| AbstractList | Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches. Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches. |
| Author | Wu, Jia Pan, Shirui Zhang, Chengqi Yu, Philip S. Zhu, Xingquan |
| Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-1371-5801 surname: Wu fullname: Wu, Jia email: jia.wu@mq.edu.au organization: Department of Computing, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 2 givenname: Shirui surname: Pan fullname: Pan, Shirui email: shirui.pan@uts.edu.au organization: Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: Xingquan surname: Zhu fullname: Zhu, Xingquan email: xzhu3@fau.edu organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA – sequence: 4 givenname: Chengqi orcidid: 0000-0001-5715-7154 surname: Zhang fullname: Zhang, Chengqi email: chengqi.zhang@uts.edu.au organization: Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 5 givenname: Philip S. orcidid: 0000-0002-3491-5968 surname: Yu fullname: Yu, Philip S. email: psyu@cs.uic.edu organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28945603$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQhi0Eonz0D4CEIrGwpNz5I7FHVEFBKjBQEJvlGAeM0qTYiRD_nkBLhw7ccjc8793p2SfbdVM7Qo4QRoigzmd3d9OHEQXMRzQHJhndInsUM5pSJuX2es6fB2QY4zv0lYHIuNolAyoVFxmwPaJuu6r1i8olD23obNsFlz5595lMnQm1r1-TsgnJJJjFWzKuTIy-9Na0vqkPyU5pquiGq35AHq8uZ-PrdHo_uRlfTFPLBLYpA4kGBcuFAVYwbrMX4CiBOku5xYIpI0AUJQBVeV6iQKSFtaZEsKVDzg7I2XLvIjQfnYutnvtoXVWZ2jVd1Kg4o5KDYj16uoG-N12o--80BaEozfIs66mTFdUVc_eiF8HPTfjSf1J6gC4BG5oYgyvXCIL-ka9_5esf-Xolvw_JjZD17a-oNhhf_R89Xka9c259SwLPuUT2DfabjtU |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3137396 crossref_primary_10_1109_ACCESS_2017_2782884 crossref_primary_10_1109_ACCESS_2018_2817845 crossref_primary_10_1109_TNSE_2022_3177307 crossref_primary_10_1155_2017_1490283 crossref_primary_10_1109_TKDE_2020_3048678 crossref_primary_10_1155_2018_3502508 crossref_primary_10_1155_2017_4783159 crossref_primary_10_1109_ACCESS_2017_2730218 crossref_primary_10_1155_2018_8425821 crossref_primary_10_1007_s00521_018_3766_9 crossref_primary_10_1109_TNNLS_2022_3195336 crossref_primary_10_1155_2017_8584252 crossref_primary_10_1109_ACCESS_2017_2731872 crossref_primary_10_1109_TKDE_2022_3144083 crossref_primary_10_1155_2018_4185279 crossref_primary_10_1109_ACCESS_2017_2785790 |
| Cites_doi | 10.1109/ICDM.2011.119 10.1145/2601412 10.1109/TNN.2011.2109011 10.1137/1.9781611972832.10 10.1109/DICTA.2011.77 10.1007/978-3-540-24775-3_35 10.1145/1148170.1148254 10.1109/ICDM.2003.1250974 10.1007/11564089_7 10.1145/1835804.1835905 10.1007/s11063-005-2192-z 10.1137/1.9781611972795.92 10.1145/2641190.2641196 10.1109/TNNLS.2015.2424254 10.1016/j.patcog.2014.07.022 10.1109/TNNLS.2013.2254721 10.1109/TASE.2010.2094608 10.1109/TSMCB.2012.2192108 10.1145/1401890.1401961 10.1109/TSMCB.2011.2106208 10.1145/2020408.2020511 10.1109/TNNLS.2015.2498149 10.1007/s10115-011-0407-3 10.1140/epjb/e2015-50742-1 10.1093/bioinformatics/btl301 10.1109/TPAMI.2006.248 10.1007/s10115-015-0872-1 10.1137/1.9781611972832.30 10.1109/TSMCB.2012.2201468 10.1007/s00521-012-1015-1 10.1109/TCYB.2016.2527239 10.1109/ICDM.2010.126 10.1145/1458082.1458212 10.1109/TKDE.2013.2297923 10.1007/978-3-319-10599-4_11 10.1109/TPAMI.2012.120 10.1023/B:NEPL.0000016836.03614.9f 10.1109/ICDE.2014.6816696 10.1186/2193-1801-3-116 10.1109/TCYB.2014.2327111 10.1016/S0004-3702(96)00034-3 10.1007/978-3-642-25832-9_5 10.1109/TPAMI.2007.70847 10.1109/TKDE.2009.58 10.1145/1376616.1376662 10.1007/s10115-007-0114-2 10.1109/TNNLS.2016.2519102 10.1109/TCYB.2016.2526058 10.1109/ICDM.2013.121 10.1109/TCYB.2014.2341031 10.1109/CVPR.2007.383049 10.1145/2396761.2396791 10.1017/S0269888912000331 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2017.2703832 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 3251 |
| ExternalDocumentID | 28945603 10_1109_TNNLS_2017_2703832 8047481 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: IIS-1526499; CNS-1115234; CNS-1626432 funderid: 10.13039/100006445 – fundername: Australian Research Council Discovery Projects grantid: DP140100545; DP140102206 funderid: 10.13039/501100000923 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-3081a15375a03b34c6d041802ec24c1b39a505bf002977f15112bccaf10cfe143 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436420400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 00:55:14 EDT 2025 Sun Nov 09 06:41:45 EST 2025 Thu Jan 02 23:00:29 EST 2025 Tue Nov 18 22:00:29 EST 2025 Sat Nov 29 01:39:58 EST 2025 Wed Aug 27 02:50:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-3081a15375a03b34c6d041802ec24c1b39a505bf002977f15112bccaf10cfe143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1371-5801 0000-0001-5715-7154 0000-0002-3491-5968 |
| PMID | 28945603 |
| PQID | 2059226766 |
| PQPubID | 85436 |
| PageCount | 16 |
| ParticipantIDs | pubmed_primary_28945603 proquest_miscellaneous_1943284093 ieee_primary_8047481 proquest_journals_2059226766 crossref_primary_10_1109_TNNLS_2017_2703832 crossref_citationtrail_10_1109_TNNLS_2017_2703832 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref10 zhou (ref8) 2004 ref16 ref19 ref18 yan (ref17) 2002 ref51 ref50 xu (ref43) 2003 ref46 pan (ref29) 2015; 45 ref48 ref47 ref41 nash (ref54) 1996 ref44 ref49 ref9 ref4 ref3 wang (ref34) 2000 ref6 ref5 kivelä (ref63) 2015 ref40 fu (ref7) 2013; 24 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 wu (ref53) 2015 mayo (ref12) 2011 ref22 ref21 ref28 ref27 telgarsky (ref42) 2012; 13 fu (ref45) 2010; 33 ref60 ref62 ref61 |
| References_xml | – ident: ref28 doi: 10.1109/ICDM.2011.119 – ident: ref4 doi: 10.1145/2601412 – ident: ref46 doi: 10.1109/TNN.2011.2109011 – ident: ref25 doi: 10.1137/1.9781611972832.10 – ident: ref5 doi: 10.1109/DICTA.2011.77 – ident: ref41 doi: 10.1007/978-3-540-24775-3_35 – ident: ref6 doi: 10.1145/1148170.1148254 – ident: ref18 doi: 10.1109/ICDM.2003.1250974 – ident: ref27 doi: 10.1007/11564089_7 – ident: ref1 doi: 10.1145/1835804.1835905 – ident: ref40 doi: 10.1007/s11063-005-2192-z – ident: ref22 doi: 10.1137/1.9781611972795.92 – ident: ref3 doi: 10.1145/2641190.2641196 – ident: ref38 doi: 10.1109/TNNLS.2015.2424254 – ident: ref37 doi: 10.1016/j.patcog.2014.07.022 – volume: 24 start-page: 1377 year: 2013 ident: ref7 article-title: Learning sparse kernel classifiers for multi-instance classification publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2254721 – ident: ref55 doi: 10.1109/TASE.2010.2094608 – start-page: 3953 year: 2015 ident: ref53 article-title: Multi-graph-view learning for complicated object classification publication-title: Proc IJCAI – ident: ref49 doi: 10.1109/TSMCB.2012.2192108 – ident: ref21 doi: 10.1145/1401890.1401961 – ident: ref48 doi: 10.1109/TSMCB.2011.2106208 – ident: ref24 doi: 10.1145/2020408.2020511 – ident: ref15 doi: 10.1109/TNNLS.2015.2498149 – start-page: 721 year: 2002 ident: ref17 article-title: gSpan: Graph-based substructure pattern mining publication-title: Proc ICDM – ident: ref26 doi: 10.1007/s10115-011-0407-3 – ident: ref16 doi: 10.1140/epjb/e2015-50742-1 – ident: ref31 doi: 10.1093/bioinformatics/btl301 – ident: ref44 doi: 10.1109/TPAMI.2006.248 – ident: ref11 doi: 10.1007/s10115-015-0872-1 – volume: 13 start-page: 561 year: 2012 ident: ref42 article-title: A primal-dual convergence analysis of boosting publication-title: J Mach Learn Res – ident: ref52 doi: 10.1137/1.9781611972832.30 – ident: ref36 doi: 10.1109/TSMCB.2012.2201468 – ident: ref50 doi: 10.1007/s00521-012-1015-1 – ident: ref59 doi: 10.1109/TCYB.2016.2527239 – ident: ref61 doi: 10.1109/ICDM.2010.126 – ident: ref19 doi: 10.1145/1458082.1458212 – volume: 33 start-page: 958 year: 2010 ident: ref45 article-title: MILIS: Multiple instance learning with instance selection publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref9 doi: 10.1109/TKDE.2013.2297923 – ident: ref58 doi: 10.1007/978-3-319-10599-4_11 – ident: ref57 doi: 10.1109/TPAMI.2012.120 – ident: ref39 doi: 10.1023/B:NEPL.0000016836.03614.9f – ident: ref14 doi: 10.1109/ICDE.2014.6816696 – ident: ref32 doi: 10.1186/2193-1801-3-116 – ident: ref10 doi: 10.1109/TCYB.2014.2327111 – ident: ref33 doi: 10.1016/S0004-3702(96)00034-3 – year: 1996 ident: ref54 publication-title: Linear and Nonlinear Programming – year: 2004 ident: ref8 article-title: Multi-instance learning: A survey – year: 2015 ident: ref63 publication-title: Isomorphisms in multilayer networks – ident: ref35 doi: 10.1007/978-3-642-25832-9_5 – ident: ref56 doi: 10.1109/TPAMI.2007.70847 – start-page: 363 year: 2011 ident: ref12 article-title: Experiments with multi-view multi-instance learning for supervised image classification publication-title: J Proc of IVCNZ – ident: ref62 doi: 10.1109/TKDE.2009.58 – year: 2003 ident: ref43 article-title: Statistical learning in multiple instance problems – ident: ref20 doi: 10.1145/1376616.1376662 – ident: ref13 doi: 10.1007/s10115-007-0114-2 – ident: ref47 doi: 10.1109/TNNLS.2016.2519102 – ident: ref30 doi: 10.1109/TCYB.2016.2526058 – start-page: 1119 year: 2000 ident: ref34 article-title: Solving multiple-instance problem: A lazy learning approach publication-title: Proc ICML – ident: ref51 doi: 10.1109/ICDM.2013.121 – volume: 45 start-page: 954 year: 2015 ident: ref29 article-title: Graph ensemble boosting for imbalanced noisy graph stream classification publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2341031 – ident: ref2 doi: 10.1109/CVPR.2007.383049 – ident: ref23 doi: 10.1145/2396761.2396791 – ident: ref60 doi: 10.1017/S0269888912000331 |
| SSID | ssj0000605649 |
| Score | 2.49573 |
| Snippet | Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3236 |
| SubjectTerms | Chemical compounds Classification Correlation Graph graph classification Graphical representations Graphs Image color analysis Labels Learning Learning systems Machine learning multiview learning Periodic structures Proteins Regularization subgraph mining Visualization |
| Title | Multiple Structure-View Learning for Graph Classification |
| URI | https://ieeexplore.ieee.org/document/8047481 https://www.ncbi.nlm.nih.gov/pubmed/28945603 https://www.proquest.com/docview/2059226766 https://www.proquest.com/docview/1943284093 |
| Volume | 29 |
| WOSCitedRecordID | wos000436420400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7qKg5cxo-yLVBQJnHbXOzYteMjQhQOrEKCTb1Fju1MSKidKIV_n2fHyYlN2i1S7MTy92x_tt_7HsBp2QjjrTFEOE4JzpIFqbnSpORGOs6kd62I642az8vFQt8O4HsfC-O9j85nfhIe412-W9lNOCo7K6lQIsRZf1BKtrFa_XkKRV4uI9stmCxIwdWii5Gh-ux-Pr-5C45calKgjaMZBxXgUiN96NJlpSUp5lj5O92My85s5_8avAsfE73Mz1t72IOBX-7DTpe6IU8jeQT6R3IkzO-igOzmyZNfD_41T3qrv3Mks_lVULPOY97M4FEUQTyAn7PL-4trkrIoEMun7JlwXPQNzmtqaiivubDSURF037wthGU11wZZUN3ENFaqYYGB1Yhrw6htPNKpTzBcrpb-C-RGW-OE9sxIKlxhS8eFE8KYhjcN5TYD1nVkZZPEeMh08VjFrQbVVcShCjhUCYcMvvV1_rQCG_8sPQq93JdMHZzBuMOrSmNwjfWmGsmlkjKDr_1rHD3hSsQs_WqzrpgWvAh7XJ7B5xbn_tudeRy-_88j2MaWla3r7hiGiJY_hi378vywfjpBE12UJ9FE3wA7H94N |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7IFPTi_G11agVvmpk0WdscRZyKswibsltJk1QE2cQ5_fdN0rQnFbwVmrQh30vyJXnvfQAnacmElkIgpihGZpaMUEETjlIqYkVJrFWVxHWQZFk6HvOHBThrYmG01s75THfto7vLV1M5t0dl5ylmCbNx1otWOctHazUnKtgw89jx3YjEEYpoMq6jZDA_H2XZYGhduZJuZKzcGLLNA5xyQyBqwSy_KDmVld8Jp1t4-u3_NXkNVj3BDC8qi1iHBT3ZgHYt3hD6sbwJ_N67EoZDl0J2_q7R04v-Cn3G1efQ0Nnw2uazDp1ypvUpcjBuwWP_anR5g7yOApK0Rz4QNcu-MDNb0hOYFpTJWGFmM79pGTFJCsqF4UFF6YSskpJYDlYYZEuCZakNodqG1mQ60bsQCi6FYlwTEWOmIpkqyhRjQpS0LDGVAZC6I3Ppk4xbrYvX3G02MM8dDrnFIfc4BHDa1HmrUmz8WXrT9nJT0ndwAJ0ar9yPwpmp1-OGXiZxHMBx89qMH3spIiZ6Op_lhDMa2V0uDWCnwrn5dm0eez__8wiWb0b3g3xwm93tw4ppZVo58nagZZDTB7AkPz9eZu-HzlC_Abru4G4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Structure-View+Learning+for+Graph+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wu%2C+Jia&rft.au=Pan%2C+Shirui&rft.au=Zhu%2C+Xingquan&rft.au=Zhang%2C+Chengqi&rft.date=2018-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=7&rft.spage=3236&rft_id=info:doi/10.1109%2FTNNLS.2017.2703832&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |