Advanced Computational Methods for Modeling, Prediction and Optimization—A Review
This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intell...
Saved in:
| Published in: | Materials Vol. 17; no. 14; p. 3521 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
16.07.2024
|
| Subjects: | |
| ISSN: | 1996-1944, 1996-1944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intelligence (AI) with traditional computational methods. Some of the cited works were previously published within the topic: “Computational Methods: Modeling, Simulations, and Optimization of Complex Systems”; thus, this article compiles the latest reports from this field. The work presents various contemporary applications of advanced computational algorithms, including AI methods. It also introduces proposals for novel strategies in materials production and optimization methods within the energy systems domain. It is essential to optimize the properties of materials used in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering valuable insights for researchers and practitioners. This review contributes to the field by synthesizing state-of-the-art developments and suggesting directions for future research, underscoring the critical role of these methods in advancing engineering and technological solutions. |
|---|---|
| AbstractList | This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intelligence (AI) with traditional computational methods. Some of the cited works were previously published within the topic: "Computational Methods: Modeling, Simulations, and Optimization of Complex Systems"; thus, this article compiles the latest reports from this field. The work presents various contemporary applications of advanced computational algorithms, including AI methods. It also introduces proposals for novel strategies in materials production and optimization methods within the energy systems domain. It is essential to optimize the properties of materials used in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering valuable insights for researchers and practitioners. This review contributes to the field by synthesizing state-of-the-art developments and suggesting directions for future research, underscoring the critical role of these methods in advancing engineering and technological solutions. This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intelligence (AI) with traditional computational methods. Some of the cited works were previously published within the topic: "Computational Methods: Modeling, Simulations, and Optimization of Complex Systems"; thus, this article compiles the latest reports from this field. The work presents various contemporary applications of advanced computational algorithms, including AI methods. It also introduces proposals for novel strategies in materials production and optimization methods within the energy systems domain. It is essential to optimize the properties of materials used in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering valuable insights for researchers and practitioners. This review contributes to the field by synthesizing state-of-the-art developments and suggesting directions for future research, underscoring the critical role of these methods in advancing engineering and technological solutions.This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intelligence (AI) with traditional computational methods. Some of the cited works were previously published within the topic: "Computational Methods: Modeling, Simulations, and Optimization of Complex Systems"; thus, this article compiles the latest reports from this field. The work presents various contemporary applications of advanced computational algorithms, including AI methods. It also introduces proposals for novel strategies in materials production and optimization methods within the energy systems domain. It is essential to optimize the properties of materials used in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering valuable insights for researchers and practitioners. This review contributes to the field by synthesizing state-of-the-art developments and suggesting directions for future research, underscoring the critical role of these methods in advancing engineering and technological solutions. |
| Author | Grabowska, Karolina Krzywanski, Jaroslaw Zylka, Anna Lasek, Lukasz Kijo-Kleczkowska, Agnieszka Sosnowski, Marcin |
| Author_xml | – sequence: 1 givenname: Jaroslaw orcidid: 0000-0002-6364-7894 surname: Krzywanski fullname: Krzywanski, Jaroslaw – sequence: 2 givenname: Marcin orcidid: 0000-0002-1906-9476 surname: Sosnowski fullname: Sosnowski, Marcin – sequence: 3 givenname: Karolina orcidid: 0000-0002-8323-8094 surname: Grabowska fullname: Grabowska, Karolina – sequence: 4 givenname: Anna orcidid: 0000-0001-6241-0863 surname: Zylka fullname: Zylka, Anna – sequence: 5 givenname: Lukasz orcidid: 0009-0001-1211-0624 surname: Lasek fullname: Lasek, Lukasz – sequence: 6 givenname: Agnieszka surname: Kijo-Kleczkowska fullname: Kijo-Kleczkowska, Agnieszka |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39063813$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0VtLwzAUB_AgEzfnXvwAUvBFxGrS9JI-juENNhQvzyXNRTPapibtRJ_8EH5CP4mZnReGeUkgv_-Bc8426FW6EgDsIniMcQpPSooSFOIoQBtggNI09lEahr0_7z4YWTuH7mCMSJBugb4LxpggPAC3Y76gFRPcm-iybhvaKF3RwpuJ5lFz60ltvJnmolDVw5F3bQRXbEk8WnHvqm5UqV6_Mh9v72PvRiyUeN4Bm5IWVoxW9xDcn53eTS786dX55WQ89RmOUOMHORERx5TzOMgFkzziYYSQpCjk0H3yAOFQEpxDGiQxS9IYoyCWMGGSxiSgeAgOurq10U-tsE1WKstEUdBK6NZmGBJXj6RJ6Oj-Gp3r1rhGOwVhnBDi1N5KtXkpeFYbVVLzkn2Py4HDDjCjrTVC_hAEs-U6st91OAzXMFPdfBtDVfFf5BN2EIuH |
| CitedBy_id | crossref_primary_10_3390_jcs9070364 crossref_primary_10_3390_designs8060136 crossref_primary_10_1002_adts_202401489 crossref_primary_10_1016_j_nxmate_2025_100683 crossref_primary_10_1016_j_rico_2025_100519 crossref_primary_10_1016_j_still_2025_106740 crossref_primary_10_1016_j_egyai_2025_100585 crossref_primary_10_1016_j_jfoodeng_2024_112440 crossref_primary_10_1016_j_rineng_2025_107367 crossref_primary_10_1007_s11831_024_10201_8 crossref_primary_10_1016_j_etran_2025_100469 crossref_primary_10_1080_10837450_2024_2410448 crossref_primary_10_3389_fpubh_2025_1558772 crossref_primary_10_1016_j_engappai_2024_109664 crossref_primary_10_1134_S0025654425601764 crossref_primary_10_54691_czaf4b21 crossref_primary_10_1007_s11227_025_07331_6 crossref_primary_10_1016_j_inffus_2024_102922 crossref_primary_10_3390_polym17182541 crossref_primary_10_3390_en18081880 crossref_primary_10_1016_j_rineng_2025_106371 crossref_primary_10_1016_j_jallcom_2025_180981 crossref_primary_10_1016_j_rser_2025_116218 crossref_primary_10_1007_s00170_025_16068_8 crossref_primary_10_1016_j_matre_2025_100356 crossref_primary_10_1142_S0217732325500191 crossref_primary_10_3390_en18185028 crossref_primary_10_1021_acs_langmuir_5c02477 crossref_primary_10_1016_j_est_2025_115363 crossref_primary_10_1039_D5TA00982K crossref_primary_10_3390_nano14242016 crossref_primary_10_3390_batteries11030107 crossref_primary_10_3390_modelling6010003 crossref_primary_10_1016_j_dche_2025_100244 crossref_primary_10_3390_polym17152012 crossref_primary_10_3390_forecast7030034 crossref_primary_10_1016_j_powtec_2025_121040 crossref_primary_10_1007_s42493_025_00131_3 crossref_primary_10_3390_electronics14051004 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_3390_polym17131868 crossref_primary_10_1016_j_energy_2025_136153 crossref_primary_10_1016_j_surfin_2025_107033 crossref_primary_10_1080_1062936X_2025_2552134 crossref_primary_10_1007_s11837_025_07258_6 crossref_primary_10_3389_fbuil_2025_1640950 |
| Cites_doi | 10.1038/s43246-021-00209-z 10.1016/j.apenergy.2019.113525 10.1108/HFF-09-2017-0357 10.3390/a16010019 10.1016/j.cep.2021.108397 10.3390/ma16031164 10.3390/en16155674 10.3390/ma15072511 10.1193/1.1585907 10.3390/ma16165720 10.1016/j.ins.2023.119260 10.1002/app.54883 10.3390/e24050711 10.1016/S0141-0296(02)00038-X 10.1016/j.applthermaleng.2022.119637 10.1080/23311916.2016.1181821 10.3390/e25010013 10.1016/j.msec.2020.110754 10.3390/ma16083213 10.3390/e24030408 10.1038/s41578-020-00260-1 10.3390/ma15072669 10.1016/j.physa.2023.129490 10.1080/01457631003604434 10.1002/adem.202300104 10.1051/matecconf/201824005014 10.3390/ma16175927 10.1016/j.mex.2022.101629 10.1038/s41524-021-00594-6 10.3390/ma14133520 10.3390/ma16041753 10.3390/make5020025 10.3390/e24081025 10.1038/nmat4717 10.3390/e24091213 10.1186/s12544-023-00624-y 10.1021/acs.chemmater.6b02724 10.1016/j.ijsolstr.2023.112545 10.1016/j.energy.2023.130168 10.3390/ma15031138 10.1126/sciadv.aaq1566 10.1016/j.rser.2021.111385 10.3390/ma16247580 10.1002/inf2.12028 10.1002/pro.4841 10.3390/e24040478 10.1038/s41524-023-01185-3 10.1016/S1385-8947(00)00140-6 10.3390/e25010009 10.3390/ma16227238 10.1007/s42114-023-00712-6 10.1002/solr.202000097 10.1007/s11831-021-09699-z 10.1016/j.icheatmasstransfer.2024.107262 10.3390/ma15207076 10.1007/978-981-99-8867-9_34 10.1016/j.compstruc.2023.107214 10.1016/j.iot.2022.100514 10.1007/978-981-99-8479-4_17 10.1016/j.prime.2023.100404 10.1016/j.scib.2021.01.022 10.1002/app.50956 10.3390/computation10040052 10.3390/ma15010045 10.1073/pnas.1607412113 10.3390/ma15113758 10.1016/j.applthermaleng.2023.120200 10.3390/en16248078 10.3390/computation10060088 10.1016/j.ress.2023.109884 10.1680/macr.2008.00068 10.1051/matecconf/201824001010 10.3390/e25010052 10.1007/s42114-023-00799-x 10.3390/ma14247680 10.3390/ma16206794 10.1002/adma.201600377 10.1038/s41598-023-50832-8 10.1016/j.physd.2019.132306 10.3390/en15218095 10.1109/ICIEA.2019.8833686 10.1016/j.jobe.2021.102727 10.3390/en12234441 10.3390/make5020033 10.1109/ACCESS.2019.2947542 10.3390/ma16031286 10.1016/B978-0-323-85484-9.00004-2 10.1016/j.cpc.2023.108994 10.1016/j.actamat.2019.03.010 10.1016/j.padiff.2023.100608 10.3390/ma16051906 10.3390/make4030039 10.3390/min10110958 10.1038/ncomms11241 10.3390/e24040525 10.1109/JSEN.2021.3116937 10.1016/j.matdes.2017.10.002 10.3390/e21111047 10.3390/e24121787 10.1002/advs.201900808 10.3390/en15061966 10.1038/npjcompumats.2016.28 10.3390/ma13030680 10.1002/9780470685853 10.3390/ma13153303 10.3390/en16041620 10.3390/ma15041587 10.1016/j.jpdc.2023.104797 10.1038/s41598-024-51479-9 10.3390/en15207700 10.1111/exsy.13537 10.1038/s41524-019-0221-0 10.3390/en16217311 10.3390/en15196955 10.1109/TII.2015.2500891 10.1038/nature17439 10.1016/j.fuproc.2009.11.008 10.1016/j.compstruct.2018.03.063 10.3390/en16155661 10.3390/en16093713 10.1016/j.compstruct.2012.09.001 10.1016/j.jtice.2020.11.003 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 |
| DOI | 10.3390/ma17143521 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | 39063813 10_3390_ma17143521 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Science Center, Poland grantid: 2018/29/B/ST8/ 00442 – fundername: Czestochowa University of Technology, Poland grantid: BS/PB-1-100-301/2024/P – fundername: National Science Centre, Poland grantid: 2023/07/X/ST8/01229 |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c351t-2b8e5d3add62becfd5d4511fa14d02b8d2134f83b0a276c7963126f07cfa682a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001277053500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Fri Sep 05 09:41:34 EDT 2025 Fri Jul 25 11:41:08 EDT 2025 Thu Apr 03 07:04:02 EDT 2025 Sat Nov 29 07:17:38 EST 2025 Tue Nov 18 20:46:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | complex systems modeling optimization simulation energy systems machine learning material engineering artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-2b8e5d3add62becfd5d4511fa14d02b8d2134f83b0a276c7963126f07cfa682a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1906-9476 0000-0002-6364-7894 0000-0001-6241-0863 0000-0002-8323-8094 0009-0001-1211-0624 |
| OpenAccessLink | https://www.proquest.com/docview/3085006788?pq-origsite=%requestingapplication% |
| PMID | 39063813 |
| PQID | 3085006788 |
| PQPubID | 2032366 |
| ParticipantIDs | proquest_miscellaneous_3085118974 proquest_journals_3085006788 pubmed_primary_39063813 crossref_primary_10_3390_ma17143521 crossref_citationtrail_10_3390_ma17143521 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jul-16 |
| PublicationDateYYYYMMDD | 2024-07-16 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Materials |
| PublicationTitleAlternate | Materials (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Krzywanski (ref_58) 2018; 28 ref_94 ref_91 ref_90 You (ref_75) 2020; 116 ref_14 Kalita (ref_70) 2022; 29 Kim (ref_56) 2009; 61 Roussel (ref_125) 2022; 4 ref_98 Jiang (ref_5) 2020; 6 ref_97 Hirzel (ref_82) 2016; 15 ref_95 Krokida (ref_113) 2000; 79 ref_18 Chudasama (ref_25) 2022; 9 ref_15 Ren (ref_87) 2018; 4 Alaei (ref_12) 2024; 16 Calgan (ref_23) 2024; 635 Xu (ref_41) 2021; 21 Gupta (ref_96) 2024; 10 Wei (ref_92) 2019; 1 Yalamanchi (ref_16) 2024; 14 ref_127 Chen (ref_42) 2016; 12 Krzywanski (ref_62) 2023; 225 ref_120 ref_22 ref_122 ref_123 Surmiak (ref_102) 2020; 4 Sobczyk (ref_13) 2024; 291 Grabowska (ref_121) 2018; 240 ref_26 Goswami (ref_124) 2023; 25 ref_72 Sherstinsky (ref_45) 2020; 404 ref_71 Schmidt (ref_9) 2019; 5 Balladini (ref_28) 2024; 185 Krzywanski (ref_77) 2010; 91 Tariq (ref_53) 2021; 41 ref_79 ref_78 Abdulkareem (ref_2) 2019; 7 ref_76 ref_73 Krzywanski (ref_100) 2024; 152 Arora (ref_21) 2024; 844 Huchet (ref_46) 2023; 221 Algarni (ref_126) 2023; 5 Liu (ref_4) 2023; 6 Nikbakt (ref_69) 2018; 195 ref_80 Yue (ref_20) 2024; 14 Ming (ref_48) 2023; 643 Oliynyk (ref_84) 2016; 28 Kheiri (ref_104) 2020; 111 Hegger (ref_54) 2003; 100 ref_89 Chen (ref_19) 2024; 33 Chen (ref_110) 2020; 7 Kalantari (ref_29) 2024; 7 Krzywanski (ref_59) 2018; 240 Wang (ref_103) 2021; 66 ref_50 Bakir (ref_55) 2002; 24 ref_52 ref_51 Stanev (ref_10) 2021; 2 Scapino (ref_119) 2019; 253 Tang (ref_49) 2018; 137 ref_61 Modi (ref_6) 2022; 20 Raccuglia (ref_93) 2016; 533 Alasfar (ref_66) 2024; 141 Zhang (ref_112) 2021; 164 ref_67 ref_65 ref_64 ref_63 Xue (ref_85) 2016; 7 Huber (ref_105) 2021; 7 Gnatowski (ref_60) 2024; 290 Ward (ref_37) 2016; 2 Lynn (ref_57) 1996; 12 Gill (ref_1) 2022; 19 Padhi (ref_111) 2016; 3 ref_115 ref_114 ref_117 ref_116 ref_118 Ongar (ref_128) 2023; 55 ref_36 ref_35 ref_34 ref_33 ref_32 Wang (ref_74) 2021; 138 ref_31 ref_30 Xue (ref_86) 2016; 113 ref_39 ref_38 Deng (ref_24) 2024; 243 Xiong (ref_27) 2024; 295 Jha (ref_68) 2013; 96 Treich (ref_83) 2016; 28 Vivekanandan (ref_99) 2023; 5 ref_108 ref_107 Tarragona (ref_109) 2021; 149 ref_47 ref_44 ref_43 ref_40 ref_101 Oliveira (ref_106) 2010; 31 Wen (ref_88) 2019; 170 Ganie (ref_11) 2024; 9 Krokos (ref_17) 2024; 286–287 ref_8 Hao (ref_3) 2023; 6 ref_7 Himanen (ref_81) 2019; 6 |
| References_xml | – volume: 2 start-page: 105 year: 2021 ident: ref_10 article-title: Artificial Intelligence for Search and Discovery of Quantum Materials publication-title: Commun. Mater. doi: 10.1038/s43246-021-00209-z – volume: 253 start-page: 113525 year: 2019 ident: ref_119 article-title: Modeling the Performance of a Sorption Thermal Energy Storage Reactor Using Artificial Neural Networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113525 – volume: 28 start-page: 254 year: 2018 ident: ref_58 article-title: Fuzzy Logic and Bed-to-Wall Heat Transfer in a Large-Scale CFBC publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-09-2017-0357 – ident: ref_33 doi: 10.3390/a16010019 – volume: 164 start-page: 108397 year: 2021 ident: ref_112 article-title: Process Intensification in Micro-Fluidized Bed Systems: A Review publication-title: Chem. Eng. Process.-Process Intensif. doi: 10.1016/j.cep.2021.108397 – ident: ref_122 doi: 10.3390/ma16031164 – ident: ref_117 doi: 10.3390/en16155674 – ident: ref_123 doi: 10.3390/ma15072511 – volume: 12 start-page: 715 year: 1996 ident: ref_57 article-title: Seismic Evaluation of Existing Reinforced Concrete Building Columns publication-title: Earthq. Spectra doi: 10.1193/1.1585907 – ident: ref_73 doi: 10.3390/ma16165720 – volume: 643 start-page: 119260 year: 2023 ident: ref_48 article-title: Handling Constrained Many-Objective Optimization Problems via Determinantal Point Processes publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119260 – volume: 141 start-page: e54883 year: 2024 ident: ref_66 article-title: Optimization of the Elastic Modulus for Polymeric Nanocomposite Membranes publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.54883 – ident: ref_38 doi: 10.3390/e24050711 – volume: 24 start-page: 1105 year: 2002 ident: ref_55 article-title: A New Design Equation for Predicting the Joint Shear Strength of Monotonically Loaded Exterior Beam-Column Joints publication-title: Eng. Struct. doi: 10.1016/S0141-0296(02)00038-X – volume: 221 start-page: 119637 year: 2023 ident: ref_46 article-title: Rotary Kiln Process: An Overview of Physical Mechanisms, Models and Applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119637 – volume: 3 start-page: 1181821 year: 2016 ident: ref_111 article-title: Prediction of Bed Pressure Drop, Fluctuation and Expansion Ratios for Three-Phase Fluidization of Ternary Mixtures of Dolomite in a Conical Conduit publication-title: Cogent Eng. doi: 10.1080/23311916.2016.1181821 – ident: ref_47 doi: 10.3390/e25010013 – volume: 111 start-page: 110754 year: 2020 ident: ref_104 article-title: Antibacterial Efficiency Assessment of Polymer-Nanoparticle Composites Using a High-Throughput Microfluidic Platform publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110754 – ident: ref_80 doi: 10.3390/ma16083213 – ident: ref_39 doi: 10.3390/e24030408 – volume: 6 start-page: 679 year: 2020 ident: ref_5 article-title: Deep Neural Networks for the Evaluation and Design of Photonic Devices publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00260-1 – ident: ref_71 doi: 10.3390/ma15072669 – volume: 635 start-page: 129490 year: 2024 ident: ref_23 article-title: Incommensurate Fractional-Order Analysis of a Chaotic System Based on Interaction between Dark Matter and Dark Energy with Engineering Applications publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2023.129490 – volume: 31 start-page: 941 year: 2010 ident: ref_106 article-title: Solar-Powered Adsorption Icemaker with Double-Stage Mass Recovery Cycle publication-title: Heat Transf. Eng. doi: 10.1080/01457631003604434 – volume: 25 start-page: 2300104 year: 2023 ident: ref_124 article-title: Artificial Intelligence in Material Engineering: A Review on Applications of Artificial Intelligence in Material Engineering publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202300104 – volume: 240 start-page: 05014 year: 2018 ident: ref_59 article-title: Modeling of a Re-Heat Two-Stage Adsorption Chiller by AI Approach publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201824005014 – ident: ref_36 doi: 10.3390/ma16175927 – volume: 9 start-page: 101629 year: 2022 ident: ref_25 article-title: Fuzzy Inference Systems for Mineral Prospectivity Modeling-Optimized Using Monte Carlo Simulations publication-title: MethodsX doi: 10.1016/j.mex.2022.101629 – volume: 7 start-page: 136 year: 2021 ident: ref_105 article-title: Common Workflows for Computing Material Properties Using Different Quantum Engines publication-title: Npj Comput Mater doi: 10.1038/s41524-021-00594-6 – ident: ref_79 doi: 10.3390/ma14133520 – ident: ref_67 doi: 10.3390/ma16041753 – volume: 5 start-page: 418 year: 2023 ident: ref_99 article-title: A Reinforcement Learning Approach for Scheduling Problems with Improved Generalization through Order Swapping publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5020025 – ident: ref_8 doi: 10.3390/e24081025 – volume: 15 start-page: 1120 year: 2016 ident: ref_82 article-title: Design of Efficient Molecular Organic Light-Emitting Diodes by a High-Throughput Virtual Screening and Experimental Approach publication-title: Nat. Mater doi: 10.1038/nmat4717 – ident: ref_95 doi: 10.3390/e24091213 – volume: 16 start-page: 1 year: 2024 ident: ref_12 article-title: Synchromodal Transport Re-Planning: An Agent-Based Simulation Approach publication-title: Eur. Transp. Res. Rev. doi: 10.1186/s12544-023-00624-y – volume: 28 start-page: 7324 year: 2016 ident: ref_84 article-title: High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02724 – volume: 286–287 start-page: 112545 year: 2024 ident: ref_17 article-title: A Graph-Based Probabilistic Geometric Deep Learning Framework with Online Enforcement of Physical Constraints to Predict the Criticality of Defects in Porous Materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112545 – volume: 290 start-page: 130168 year: 2024 ident: ref_60 article-title: Experimental Research and Prediction of Heat Generation during Plastics, Coal and Biomass Waste Combustion Using Thermal Analysis Methods publication-title: Energy doi: 10.1016/j.energy.2023.130168 – ident: ref_127 doi: 10.3390/ma15031138 – volume: 4 start-page: eaaq1566 year: 2018 ident: ref_87 article-title: Accelerated Discovery of Metallic Glasses through Iteration of Machine Learning and High-Throughput Experiments publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq1566 – volume: 149 start-page: 111385 year: 2021 ident: ref_109 article-title: Systematic Review on Model Predictive Control Strategies Applied to Active Thermal Energy Storage Systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111385 – ident: ref_115 – ident: ref_65 doi: 10.3390/ma16247580 – volume: 1 start-page: 338 year: 2019 ident: ref_92 article-title: Machine Learning in Materials Science publication-title: InfoMat doi: 10.1002/inf2.12028 – volume: 33 start-page: e4841 year: 2024 ident: ref_19 article-title: TEPCAM: Prediction of T-Cell Receptor–Epitope Binding Specificity via Interpretable Deep Learning publication-title: Protein Sci. doi: 10.1002/pro.4841 – ident: ref_30 doi: 10.3390/e24040478 – volume: 10 start-page: 1 year: 2024 ident: ref_96 article-title: Structure-Aware Graph Neural Network Based Deep Transfer Learning Framework for Enhanced Predictive Analytics on Diverse Materials Datasets publication-title: npj Comput. Mater. doi: 10.1038/s41524-023-01185-3 – volume: 79 start-page: 1 year: 2000 ident: ref_113 article-title: Pareto Design of Fluidized Bed Dryers publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(00)00140-6 – ident: ref_34 doi: 10.3390/e25010009 – volume: 20 start-page: 25 year: 2022 ident: ref_6 article-title: Role of Artificial Intelligence in Detecting Colonic Polyps during Intestinal Endoscopy publication-title: Eng. Sci. – ident: ref_76 doi: 10.3390/ma16227238 – volume: 6 start-page: 129 year: 2023 ident: ref_3 article-title: Artificial Optoelectronic Synaptic Devices Based on Vertical Organic Field-Effect Transistors with Low Energy Consumption publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-023-00712-6 – volume: 4 start-page: 2000097 year: 2020 ident: ref_102 article-title: High-Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening publication-title: Sol. RRL doi: 10.1002/solr.202000097 – volume: 29 start-page: 3305 year: 2022 ident: ref_70 article-title: A Comprehensive Review on High-Fidelity and Metamodel-Based Optimization of Composite Laminates publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09699-z – volume: 152 start-page: 107262 year: 2024 ident: ref_100 article-title: Towards Enhanced Heat and Mass Exchange in Adsorption Systems: The Role of AutoML and Fluidized Bed Innovations publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2024.107262 – volume: 55 start-page: 2023 year: 2023 ident: ref_128 article-title: Optimization of the Design and Operating Characteristics of a Boiler Based on Three- Dimensional Mathematical Modeling publication-title: Bulg. Chem. Commun. – ident: ref_52 doi: 10.3390/ma15207076 – ident: ref_18 doi: 10.1007/978-981-99-8867-9_34 – volume: 291 start-page: 107214 year: 2024 ident: ref_13 article-title: Computational Modelling of Historic Masonry Railroad Arch Bridges publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2023.107214 – volume: 19 start-page: 100514 year: 2022 ident: ref_1 article-title: AI for next Generation Computing: Emerging Trends and Future Directions publication-title: Internet Things doi: 10.1016/j.iot.2022.100514 – volume: 844 start-page: 229 year: 2024 ident: ref_21 article-title: Data-Driven Decision Support Systems in E-Governance: Leveraging AI for Policymaking publication-title: Lect. Notes Netw. Syst. doi: 10.1007/978-981-99-8479-4_17 – volume: 7 start-page: 100404 year: 2024 ident: ref_29 article-title: GPU-Based Transient Analysis of Modern Grids Deploying a Hybrid DDM Algorithm publication-title: e-Prime—Adv. Electr. Eng. Electron. Energy doi: 10.1016/j.prime.2023.100404 – volume: 66 start-page: 958 year: 2021 ident: ref_103 article-title: Towards Enhanced Strength-Ductility Synergy via Hierarchical Design in Steels: From the Material Genome Perspective publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.01.022 – volume: 138 start-page: 50956 year: 2021 ident: ref_74 article-title: Correlating the 3D Melt Electrospun Polycaprolactone Fiber Diameter and Process Parameters Using Neural Networks publication-title: J Appl. Polym. Sci doi: 10.1002/app.50956 – ident: ref_107 doi: 10.3390/computation10040052 – ident: ref_91 doi: 10.3390/ma15010045 – volume: 113 start-page: 13301 year: 2016 ident: ref_86 article-title: Accelerated Search for BaTiO3 -Based Piezoelectrics with Vertical Morphotropic Phase Boundary Using Bayesian Learning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607412113 – ident: ref_51 doi: 10.3390/ma15113758 – volume: 225 start-page: 120200 year: 2023 ident: ref_62 article-title: Heat and Mass Transfer Prediction in Fluidized Beds of Cooling and Desalination Systems by AI Approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120200 – ident: ref_63 doi: 10.3390/en16248078 – ident: ref_7 doi: 10.3390/computation10060088 – volume: 243 start-page: 109884 year: 2024 ident: ref_24 article-title: A Novel Methodology to Quantify the Impact of Safety Barriers on Maritime Operational Risk Based on a Probabilistic Network publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109884 – volume: 61 start-page: 119 year: 2009 ident: ref_56 article-title: Joint Shear Behaviour of Reinforced Concrete Beam–Column Connections publication-title: Mag. Concr. Res. doi: 10.1680/macr.2008.00068 – volume: 240 start-page: 01010 year: 2018 ident: ref_121 article-title: Analysis of Heat Transfer in a Coated Bed of an Adsorption Chiller publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201824001010 – volume: 100 start-page: 654 year: 2003 ident: ref_54 article-title: Nonseismic Design of Beam-Column Joints publication-title: Struct. J. – ident: ref_40 doi: 10.3390/e25010052 – volume: 6 start-page: 217 year: 2023 ident: ref_4 article-title: Flexible Cementite/Ferroferric Oxide/Silicon Dioxide/Carbon Nanofibers Composite Membrane with Low-Frequency Dispersion Weakly Negative Permittivity publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-023-00799-x – ident: ref_94 doi: 10.3390/ma14247680 – ident: ref_61 doi: 10.3390/ma16206794 – volume: 28 start-page: 6277 year: 2016 ident: ref_83 article-title: Rational Co-Design of Polymer Dielectrics for Energy Storage publication-title: Adv. Mater. doi: 10.1002/adma.201600377 – volume: 14 start-page: 947 year: 2024 ident: ref_20 article-title: Machine Learning Assisted Rational Design of Antimicrobial Peptides Based on Human Endogenous Proteins and Their Applications for Cosmetic Preservative System Optimization publication-title: Sci. Rep. doi: 10.1038/s41598-023-50832-8 – volume: 404 start-page: 132306 year: 2020 ident: ref_45 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: ref_116 doi: 10.3390/en15218095 – ident: ref_43 doi: 10.1109/ICIEA.2019.8833686 – volume: 41 start-page: 102727 year: 2021 ident: ref_53 article-title: A Regression Model for Predicting the Shear Strength of RC Knee Joint Subjected to Opening and Closing Moment publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.102727 – ident: ref_120 doi: 10.3390/en12234441 – volume: 5 start-page: 560 year: 2023 ident: ref_126 article-title: Systematic Review of Recommendation Systems for Course Selection publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5020033 – volume: 7 start-page: 153123 year: 2019 ident: ref_2 article-title: A Review of Fog Computing and Machine Learning: Concepts, Applications, Challenges, and Open Issues publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947542 – ident: ref_50 doi: 10.3390/ma16031286 – ident: ref_72 doi: 10.1016/B978-0-323-85484-9.00004-2 – volume: 295 start-page: 108994 year: 2024 ident: ref_27 article-title: GPIC: A Set of High-Efficiency CUDA Fortran Code Using Gpu for Particle-in-Cell Simulation in Space Physics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2023.108994 – volume: 170 start-page: 109 year: 2019 ident: ref_88 article-title: Machine Learning Assisted Design of High Entropy Alloys with Desired Property publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.010 – volume: 9 start-page: 100608 year: 2024 ident: ref_11 article-title: New Investigation of the Analytical Behaviors for Some Nonlinear PDEs in Mathematical Physics and Modern Engineering publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2023.100608 – ident: ref_101 doi: 10.3390/ma16051906 – volume: 4 start-page: 803 year: 2022 ident: ref_125 article-title: Sensor Fusion for Occupancy Estimation: A Study Using Multiple Lecture Rooms in a Complex Building publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make4030039 – ident: ref_44 doi: 10.3390/min10110958 – volume: 7 start-page: 11241 year: 2016 ident: ref_85 article-title: Accelerated Search for Materials with Targeted Properties by Adaptive Design publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – ident: ref_31 doi: 10.3390/e24040525 – volume: 21 start-page: 27632 year: 2021 ident: ref_41 article-title: A Soft Sensor Modeling of Cement Rotary Kiln Temperature Field Based on Model-Driven and Data-Driven Methods publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3116937 – volume: 137 start-page: 214 year: 2018 ident: ref_49 article-title: Development of High-Performance Energy Absorption Component Based on the Structural Design and Nanocrystallization publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.002 – ident: ref_14 doi: 10.3390/e21111047 – ident: ref_32 doi: 10.3390/e24121787 – volume: 6 start-page: 1900808 year: 2019 ident: ref_81 article-title: Data-Driven Materials Science: Status, Challenges, and Perspectives publication-title: Adv. Sci. doi: 10.1002/advs.201900808 – volume: 7 start-page: 329 year: 2020 ident: ref_110 article-title: A Model Predictive Control Method for Hybrid Energy Storage Systems publication-title: CSEE J. Power Energy Syst. – ident: ref_97 doi: 10.3390/en15061966 – volume: 2 start-page: 16028 year: 2016 ident: ref_37 article-title: A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2016.28 – ident: ref_89 doi: 10.3390/ma13030680 – ident: ref_26 doi: 10.1002/9780470685853 – ident: ref_90 doi: 10.3390/ma13153303 – ident: ref_35 doi: 10.3390/en16041620 – ident: ref_78 doi: 10.3390/ma15041587 – volume: 185 start-page: 104797 year: 2024 ident: ref_28 article-title: Exploring Energy Saving Opportunities in Fault Tolerant HPC Systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2023.104797 – volume: 14 start-page: 930 year: 2024 ident: ref_16 article-title: Estimation of Pore Structure and Permeability in Tight Carbonate Reservoir Based on Machine Learning (ML) Algorithm Using SEM Images of Jaisalmer Sub-Basin, India publication-title: Sci. Rep. doi: 10.1038/s41598-024-51479-9 – ident: ref_114 doi: 10.3390/en15207700 – ident: ref_22 doi: 10.1111/exsy.13537 – volume: 5 start-page: 83 year: 2019 ident: ref_9 article-title: Recent Advances and Applications of Machine Learning in Solid-State Materials Science publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – ident: ref_64 doi: 10.3390/en16217311 – ident: ref_98 doi: 10.3390/en15196955 – ident: ref_15 – volume: 12 start-page: 148 year: 2016 ident: ref_42 article-title: Recognition of the Temperature Condition of a Rotary Kiln Using Dynamic Features of a Series of Blurry Flame Images publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2015.2500891 – volume: 533 start-page: 73 year: 2016 ident: ref_93 article-title: Machine-Learning-Assisted Materials Discovery Using Failed Experiments publication-title: Nature doi: 10.1038/nature17439 – volume: 91 start-page: 364 year: 2010 ident: ref_77 article-title: Modeling of Solid Fuel Combustion in Oxygen-Enriched Atmosphere in Circulating Fluidized Bed Boiler. Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.11.008 – volume: 195 start-page: 158 year: 2018 ident: ref_69 article-title: A Review on Optimization of Composite Structures Part I: Laminated Composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.03.063 – ident: ref_108 doi: 10.3390/en16155661 – ident: ref_118 doi: 10.3390/en16093713 – volume: 96 start-page: 833 year: 2013 ident: ref_68 article-title: A Critical Review of Recent Research on Functionally Graded Plates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2012.09.001 – volume: 116 start-page: 238 year: 2020 ident: ref_75 article-title: Deep Learning Techniques for Polycaprolactone Molecular Weight Prediction via Enzymatic Polymerization Process publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2020.11.003 |
| SSID | ssj0000331829 |
| Score | 2.5782998 |
| SecondaryResourceType | review_article |
| Snippet | This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 3521 |
| SubjectTerms | Algorithms Artificial intelligence Cloud computing Complex systems Engineering Machine learning Material properties Materials engineering Mathematical models Mechanical engineering Monte Carlo simulation Neural networks Numerical analysis Optimization Optimization techniques State-of-the-art reviews System theory Systems analysis Trends |
| Title | Advanced Computational Methods for Modeling, Prediction and Optimization—A Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39063813 https://www.proquest.com/docview/3085006788 https://www.proquest.com/docview/3085118974 |
| Volume | 17 |
| WOSCitedRecordID | wos001277053500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB3ETg7tIUtXN4nBorkUqBqRtCTqFDiBgxapHSFd4J4EmhSBArXs2E7P-Yh8Yb4kMxLtNEDbS48EB6KgGQ5nEd8DOBjpiMtY2cA5bulKjg6UiVwg4qTA40GZtGKe-_YpGQzUcJhmvuA2979VLn1i5ajtxFCN_FASthq5VnU0vQyINYq6q55CowHrhFSGdr5-3BtkF6sqSyjRZkVa45JKzO8Px7qi_I4Ef3gS_SW8rI6Z063_fcFt2PQBJuvWFrEDa0X5BB7_Bjv4FD53feOf1ZwOvh7I-hWb9JxhHMuII41uqr9j2Yx6OSTCdGnZOfqYsb-8eXt902V1d-EZfD3tfTn5EHhyhcDIiC8CMVJFZCW6t1igHp2NLEGVOc07NsRJS1BvTslRqEUSmwQ3KhexCxPjdKyEls-hWU7K4iWwDsomhcNIQGJyiREnOq4wLZwzPIltalvwdvmhc-ORx4kA42eOGQgpJb9XSgverGSnNd7GH6X2ljrI_Z6b5_cKaMHr1TTuFmqB6LKYXNUymFJhEtWCF7WeV8vgEuiMuHz174fvwiOBgQ3Vd3m8B83F7KrYhw3za_FjPmtDIxmqtjdDHJ0dv8dR9rGffb8DK1PpHQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7ALgl6UEGEVZQm6sGECdPdO6-DMRuVsGF33QQ0cBp6-5GQwCzuQ8ONH-Hv8Ef5S6yax4KJcOPAeSrd6emvq-vRVR_Am4EKuAxj4znHDZXkKC_WgfNEGFm8HmKd5Mxz3zpRrxcfHib9Ofhd1cLQs8pKJ-aK2gw1xci3JfVWI9Uafzj_7hFrFGVXKwqNAhZ79uInumzj9-1PuL9vhdj5fPBx1ytZBTwtAz7xxCC2gZF4rkOBC3AmMNSjyyneND5-NNTjzMVy4CsRhTpChHIROj_SToWxUBLHnYd6k8Beg3q_3e0fzaI6vsQzIpKiD6qUib99pnKK8UDwf2--G8zZ_FrbeXzffsgTeFQa0KxVIH4J5my2DA-vtVV8Cvut8mEDKzgryngn6-Zs2WOGdjojDjiqxN9i_RHlqkiEqcywL6hDz8ri1D-Xv1qsyJ6swNc7WdUzqGXDzK4Ba6JsZB1aOhKdZ7SoUTH7iXVO8yg0iWnAu2pjU112VieCj9MUPSwCQXoFgga8nsmeF_1E_iu1Xu15WuqUcXq14Q3YnH1GbUApHpXZ4bSQQZcRncQGrBa4mk2DU6Cy5fL57YNvwOLuQbeTdtq9vRfwQKARR7FsHq5DbTKa2pewoH9MTsajVyX4GRzfNbz-AlYLQ10 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gYowc8ImsgrYRDyZOdrp753UwZiNs3ADrJCLB09Dbj8REZnF30XDjR_Br_Dn8EqpmehZN1BsHz1PpTk89uh5d9QFsjFTEZZyawDluqCVHBamOXCDixOL1kOqsQp7b30mGw_TgIMsX4GfTC0PPKhubWBlqM9aUI-9Imq1GpjXtOP8sIt_svz3-FhCCFFVaGziNWkS27ekPDN-mbwabyOuXQvS39t69DzzCQKBlxGeBGKU2MhJ1PBZ4GGciQ_O6nOJdE-JHQ_POXCpHoRJJrBOUVi5iFybaqTgVSuK6N2ARXfKuaMFiPtjNP88zPKFEfRFZPRNVyizsHKkKbjwS_Pdb8C-ubXXF9e_8zz_nLix7x5r1ak24Bwu2vA9Lv4xbfAAfe_7BA6uxLHwelO1WKNpThv47I2w46tB_zfIJ1bCIhKnSsA9oW4980-rF2XmP1VWVh_DpWk61Aq1yXNpVYF2kTaxDD0hiUI2eNhrsMLPOaZ7EJjNteNUwudB-4joBf3wtMPIigSiuBKINL-a0x_WckT9SrTX8L7ytmRZXzG_D8_lntBJU-lGlHZ_UNBhKYvDYhke1jM23wS3QCHP5-N-LP4NbKFPFzmC4_QRuC_TtKMXN4zVozSYndh1u6u-zL9PJU68HDA6vW7ouAbPfTB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Computational+Methods+for+Modeling%2C+Prediction+and+Optimization-A+Review&rft.jtitle=Materials&rft.au=Krzywanski%2C+Jaroslaw&rft.au=Sosnowski%2C+Marcin&rft.au=Grabowska%2C+Karolina&rft.au=Zylka%2C+Anna&rft.date=2024-07-16&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=14&rft_id=info:doi/10.3390%2Fma17143521&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |