Mitigation technique for performance degradation of virtual machine owing to GPU pass-through in fog computing

As the size of data increases and computation becomes complicated in fog computing environments, the need for highperformance computation is increasing. One of the most popular ways to improve the performance of a virtual machine (VM) is to allocate a graphic processing unit (GPU) to the VM for supp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of communications and networks Ročník 20; číslo 3; s. 257 - 265
Hlavní autori: Kang, Jihun, Yu, Heonchang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Seoul Editorial Department of Journal of Communications and Networks 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
한국통신학회
Predmet:
ISSN:1229-2370, 1976-5541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the size of data increases and computation becomes complicated in fog computing environments, the need for highperformance computation is increasing. One of the most popular ways to improve the performance of a virtual machine (VM) is to allocate a graphic processing unit (GPU) to the VM for supporting general purpose computing on graphic processing unit (GPGPU) operations. The direct pass-through, often used for GPUs in VMs, is popular in the cloud because VMs can use the full functionality of the GPU and experience virtually no performance degradation owing to virtualization. Direct pass-through is very useful for improving the performance of VMs. However, since the GPU usage time is not considered in the VM scheduler that operates based on the central processing unit (CPU) usage time of the VM, the VM performing the GPGPU operation degrades the performance of other VMs. In this paper, we analyze the effect of the VM performing the GPGPU operation (GPGPU-intensive VM) on other VMs through experiments. Then, we propose a method to mitigate the performance degradation of other VMs by dynamically allocating the resource usage time of the VM and preventing the priority preemption of the GPGPU-intensive VM.
AbstractList As the size of data increases and computation becomescomplicated in fog computing environments, the need for highperformancecomputation is increasing. One of the most popularways to improve the performance of a virtual machine (VM) is toallocate a graphic processing unit (GPU) to the VM for supportinggeneral purpose computing on graphic processing unit (GPGPU)operations. The direct pass-through, often used for GPUs in VMs,is popular in the cloud because VMs can use the full functionalityof the GPU and experience virtually no performance degradationowing to virtualization. Direct pass-through is very useful forimproving the performance of VMs. However, since the GPU usagetime is not considered in the VM scheduler that operates basedon the central processing unit (CPU) usage time of the VM, theVM performing the GPGPU operation degrades the performanceof other VMs. In this paper, we analyze the effect of the VM performingthe GPGPU operation (GPGPU-intensive VM) on otherVMs through experiments. Then, we propose a method to mitigatethe performance degradation of other VMs by dynamically allocatingthe resource usage time of the VM and preventing the prioritypreemption of the GPGPU-intensive VM. KCI Citation Count: 6
As the size of data increases and computation becomes complicated in fog computing environments, the need for highperformance computation is increasing. One of the most popular ways to improve the performance of a virtual machine (VM) is to allocate a graphic processing unit (GPU) to the VM for supporting general purpose computing on graphic processing unit (GPGPU) operations. The direct pass-through, often used for GPUs in VMs, is popular in the cloud because VMs can use the full functionality of the GPU and experience virtually no performance degradation owing to virtualization. Direct pass-through is very useful for improving the performance of VMs. However, since the GPU usage time is not considered in the VM scheduler that operates based on the central processing unit (CPU) usage time of the VM, the VM performing the GPGPU operation degrades the performance of other VMs. In this paper, we analyze the effect of the VM performing the GPGPU operation (GPGPU-intensive VM) on other VMs through experiments. Then, we propose a method to mitigate the performance degradation of other VMs by dynamically allocating the resource usage time of the VM and preventing the priority preemption of the GPGPU-intensive VM.
Author Jihun Kang
Heonchang Yu
Author_xml – sequence: 1
  givenname: Jihun
  surname: Kang
  fullname: Kang, Jihun
  organization: Department of Computer Science and Engineering, Korea University
– sequence: 2
  givenname: Heonchang
  surname: Yu
  fullname: Yu, Heonchang
  organization: Department of Computer Science and Engineering, Korea University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002366209$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kb9PGzEcxS1EJSDtzMBiianDBf8-34iiNqWiBVVhthyffTEk9tXnK-K_r5OrGDrEy_PweV99v-9dgNMQgwXgEqM5xqi5-b74OScIyzkqj8oTcI6bWlScM3xa_oQ0FaE1OgMXw_CMEMOU4XMQfvjsO519DDBbswn-92ihiwn2NhXZ6WAsbG2XdDtR0cE_PuVRb-FOm40PFsZXHzqYI1w-PsFeD0OVNymO3Qb6UGZ10MRdP-YCfQQfnN4O9tM_nYGnr19Wi2_V_cPybnF7XxnKca7IWrSkca2sHWtIzQRxhnEtBV0L3RLrmEXcON4KgrSg0mFDnKO05WskW2PoDHye5obk1IvxKmp_0C6ql6Ruf63uFCNI0BLVDFxPbJ9iOX7I6jmOKZT1FCWCU0pYCesIRZCUDUfiQPGJMikOQ7JOGZ8PueWk_VZhpPZlqVKW2pelprKK7-Y_X5_8Tqe3I46ryeGtte-0ZLTen_UXg7-gvg
CitedBy_id crossref_primary_10_1049_wss2_12011
crossref_primary_10_1007_s10586_024_04439_x
crossref_primary_10_1002_cpe_6048
crossref_primary_10_1007_s11227_020_03460_2
crossref_primary_10_1109_ACCESS_2019_2920325
crossref_primary_10_1016_j_jss_2021_111010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ACYCR
DOI 10.1109/JCN.2018.000038
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-5541
EndPage 265
ExternalDocumentID oai_kci_go_kr_ARTI_4206300
10_1109_JCN_2018_000038
8437206
Genre orig-research
GroupedDBID -~X
29K
4.4
5GY
6IK
97E
9ZL
AAIKC
AAJGR
AAMNW
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
AENEX
AGQYO
ALMA_UNASSIGNED_HOLDINGS
D-I
EBS
EJD
IFIPE
IPLJI
JAVBF
KVFHK
M43
O9-
P2P
PQQKQ
RIA
RIE
RNS
SJN
TWZ
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
.UV
0B8
0R~
ACYCR
ALLEH
OCL
RIG
ID FETCH-LOGICAL-c351t-2b6d29fd87f4927462fc45a863b6ad2ef4e05cf5d620a638f1c2ff33d5b08dcc3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442356100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1229-2370
IngestDate Tue Nov 21 21:44:41 EST 2023
Mon Oct 27 15:59:01 EDT 2025
Fri Jul 25 05:39:35 EDT 2025
Tue Nov 18 19:37:53 EST 2025
Sat Nov 29 02:24:29 EST 2025
Wed Aug 27 06:01:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-2b6d29fd87f4927462fc45a863b6ad2ef4e05cf5d620a638f1c2ff33d5b08dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2088950641
PQPubID 2040494
PageCount 9
ParticipantIDs proquest_journals_3265332441
nrf_kci_oai_kci_go_kr_ARTI_4206300
crossref_citationtrail_10_1109_JCN_2018_000038
proquest_journals_2088950641
ieee_primary_8437206
crossref_primary_10_1109_JCN_2018_000038
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Journal of communications and networks
PublicationTitleAbbrev JCN
PublicationYear 2018
Publisher Editorial Department of Journal of Communications and Networks
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
한국통신학회
Publisher_xml – name: Editorial Department of Journal of Communications and Networks
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: 한국통신학회
SSID ssj0041341
ssib053388723
ssib030087698
Score 2.1654813
Snippet As the size of data increases and computation becomes complicated in fog computing environments, the need for highperformance computation is increasing. One of...
As the size of data increases and computation becomescomplicated in fog computing environments, the need for highperformancecomputation is increasing. One of...
SourceID nrf
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 257
SubjectTerms Central Processing Unit
Central processing units
Cloud computing
CPUs
Degradation
Edge computing
Fog computing
general purpose computing on graphic processing unit (GPGPU)
Graphics processing units
Performance degradation
Performance enhancement
Performance evaluation
performance isolation
Virtual environments
Virtual machine monitors
Virtualization
전자/정보통신공학
Title Mitigation technique for performance degradation of virtual machine owing to GPU pass-through in fog computing
URI https://ieeexplore.ieee.org/document/8437206
https://www.proquest.com/docview/2088950641
https://www.proquest.com/docview/3265332441
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002366209
Volume 20
WOSCitedRecordID wos000442356100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Communications and Networks, 2018, 20(3), , pp.257-265
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1976-5541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041341
  issn: 1229-2370
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T-QwEB5xKwqu4HFwYmFB1ukKCgKO83JKhHhKt6IAic5K_EARkKzCAn-fGSe7IMEVVLEUx7HyxfY39sw3AH-TIgrLiJugE9XWiQmK0pVBKI1GOpHYoix9solsPJa3t_nVAuzPY2Gstd75zB5Q0Z_lm0Y_01bZoaRDJtLX_pFlaRerNZt1YxImI-NKiDwQUcZ7GZ-Q54eXx2Py4ZJeq5ACUT6sQD6lCq4rdes-zcZ-iTld-V7nVmG5p5LsqMN-DRZs_Qt-fhAYXIf6X9VpaDQ1m6u1MuSpbPIeMMAMCUZ0uZVY49hL1VJQCXv0fpaWNa_YFps27Ozqhk2QbAd9ch9W1djWHdM-MwRW2oCb05Pr4_Ogz7AQ6CgJp4EoUyNyZ2Tm4hzt01Q4HSeFTKMyLYywLrY80S4xqeAFjlQXauFcFJmk5Aimjn7DoG5quwlM6JwLkxqbxi7GgkQmxG2mkVNJtJLCIRzMvrrSvfw4ZcF4UN4M4blCmBTBpDqYhrA3f2DSKW_8v-o64TGv1kMxhD8Iq7rXlSIRbbreNeq-VWgqXKhYeLmxIYxmqKt--D5h21LmJOUXfnkbKS-yZCRG4dbXb96GJepe51I2gsG0fbY7sKhfptVTu-t_3DfpKOsS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4higQ9FCigLqVgVT1wIOA4cdY5IlTerDiAxM1K_EARbbIKC_z9zjjZLVLh0FMsxXGsfH58E898A_BDFklcJtxGnai2kTYqSl9GsbIG6YR0RVmGZBPD0Ujd3eXXc7A3i4VxzgXnM7dPxXCWbxvzRL_KDhQdMpG-9geZpoJ30VrTdTclaTIyr4TII5EMeS_kE_P84PxoRF5cKqgVUijKqz0oJFXBnaVu_T_rcdhkjpf_r3sr8Kknk-ywQ38V5lz9GT6-khhcg_qq6lQ0mprN9FoZMlU2_hsywCxJRnTZlVjj2XPVUlgJ-x08LR1rXrAtNmnYyfUtGyPdjvr0Pqyqsa17ZkJuCKy0DrfHP2-OTqM-x0JkEhlPIlFmVuTeqqFPc7RQM-FNKguVJWVWWOF86rg0XtpM8ALnqo-N8D5JrCw5wmmSDZivm9p9ASZMzoXNrMtSn2JBIRfibmiQVSm0k-IB7E-_uja9ADnlwfilgyHCc40waYJJdzANYHf2wLjT3ni_6hrhMavWQzGA7wirfjCVJhltut43-qHVaCycaRxCJDg2gK0p6rqfwI_YtlI5ifnFb95G0os8GalRvPn2m3dg8fTm6lJfno0uvsISdbVzMNuC-Un75L7BgnmeVI_tdhjEfwBG2O5Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+technique+for+performance+degradation+of+virtual+machine+owing+to+GPU+pass-through+in+fog+computing&rft.jtitle=Journal+of+communications+and+networks&rft.au=Jihun+Kang&rft.au=Heonchang+Yu&rft.date=2018-06-01&rft.pub=Editorial+Department+of+Journal+of+Communications+and+Networks&rft.issn=1229-2370&rft.volume=20&rft.issue=3&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1109%2FJCN.2018.000038&rft.externalDocID=8437206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-2370&client=summon