Kernel Adaptive Filtering Over Complex Networks

This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is der...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 3; s. 1 - 8
Hlavní autoři: Li, Wenling, Wang, Zidong, Hu, Jun, Du, Junping, Sheng, Weiguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3199679