A Two-Timescale Duplex Neurodynamic Approach to Mixed-Integer Optimization

This article presents a two-timescale duplex neurodynamic approach to mixed-integer optimization, based on a biconvex optimization problem reformulation with additional bilinear equality or inequality constraints. The proposed approach employs two recurrent neural networks operating concurrently at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 1; s. 36 - 48
Hlavní autoři: Che, Hangjun, Wang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article presents a two-timescale duplex neurodynamic approach to mixed-integer optimization, based on a biconvex optimization problem reformulation with additional bilinear equality or inequality constraints. The proposed approach employs two recurrent neural networks operating concurrently at two timescales. In addition, particle swarm optimization is used to update the initial neuronal states iteratively to escape from local minima toward better initial states. In spite of its minimal system complexity, the approach is proven to be almost surely convergent to optimal solutions. Its superior performance is substantiated via solving five benchmark problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.2973760