A Deep Convolutional Gated Recurrent Unit for CT Image Reconstruction
Computed tomography (CT) is one of the most important medical imaging technologies in use today. Most commercial CT products use a technique known as the filtered backprojection (FBP) that is fast and can produce decent image quality when an X-ray dose is high. However, the FBP is not good enough on...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 34; číslo 12; s. 10612 - 10625 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Computed tomography (CT) is one of the most important medical imaging technologies in use today. Most commercial CT products use a technique known as the filtered backprojection (FBP) that is fast and can produce decent image quality when an X-ray dose is high. However, the FBP is not good enough on low-dose X-ray CT imaging because the CT image reconstruction problem becomes more stochastic. A more effective reconstruction technique proposed recently and implemented in a limited number of CT commercial products is an iterative reconstruction (IR). The IR technique is based on a Bayesian formulation of the CT image reconstruction problem with an explicit model of the CT scanning, including its stochastic nature, and a prior model that incorporates our knowledge about what a good CT image should look like. However, constructing such prior knowledge is more complicated than it seems. In this article, we propose a novel neural network for CT image reconstruction. The network is based on the IR formulation and constructed with a recurrent neural network (RNN). Specifically, we transform the gated recurrent unit (GRU) into a neural network performing CT image reconstruction. We call it "GRU reconstruction." This neural network conducts concurrent dual-domain learning. Many deep learning (DL)-based methods in medical imaging are single-domain learning, but dual-domain learning performs better because it learns from both the sinogram and the image domain. In addition, we propose backpropagation through stage (BPTS) as a new RNN backpropagation algorithm. It is similar to the backpropagation through time (BPTT) of an RNN; however, it is tailored for iterative optimization. Results from extensive experiments indicate that our proposed method outperforms conventional model-based methods, single-domain DL methods, and state-of-the-art DL techniques in terms of the root mean squared error (RMSE), the peak signal-to-noise ratio (PSNR), and the structure similarity (SSIM) and in terms of visual appearance. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2022.3169569 |