Neighborhood Geometric Structure-Preserving Variational Autoencoder for Smooth and Bounded Data Sources
Many data sources, such as human poses, lie on low-dimensional manifolds that are smooth and bounded. Learning low-dimensional representations for such data is an important problem. One typical solution is to utilize encoder-decoder networks. However, due to the lack of effective regularization in l...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 33; číslo 8; s. 3598 - 3611 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!