Benchmarking Neural Networks For Quantum Computations

The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calcu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 31; no. 7; pp. 2522 - 2531
Main Authors: Nguyen, Nam H., Behrman, E. C., Moustafa, Mohamed A., Steck, J. E.
Format: Journal Article
Language:English
Published: United States IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calculations there will be a "quantum advantage," once an algorithm is found. One way to answer the question is to find those algorithms, but finding truly quantum algorithms turns out to be very difficult. In previous work, over the past three decades, we have pursued the idea of using techniques of machine learning to develop algorithms for quantum computing. Here, we compare the performance of standard real- and complex-valued classical neural networks with that of one of our models for a quantum neural network, on both classical problems and on an archetypal quantum problem: the computation of an entanglement witness. The quantum network is shown to need far fewer epochs and a much smaller network to achieve comparable or better results.
AbstractList The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calculations there will be a “quantum advantage,” once an algorithm is found. One way to answer the question is to find those algorithms, but finding truly quantum algorithms turns out to be very difficult. In previous work, over the past three decades, we have pursued the idea of using techniques of machine learning to develop algorithms for quantum computing. Here, we compare the performance of standard real- and complex-valued classical neural networks with that of one of our models for a quantum neural network, on both classical problems and on an archetypal quantum problem: the computation of an entanglement witness. The quantum network is shown to need far fewer epochs and a much smaller network to achieve comparable or better results.
The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calculations there will be a "quantum advantage," once an algorithm is found. One way to answer the question is to find those algorithms, but finding truly quantum algorithms turns out to be very difficult. In previous work, over the past three decades, we have pursued the idea of using techniques of machine learning to develop algorithms for quantum computing. Here, we compare the performance of standard real- and complex-valued classical neural networks with that of one of our models for a quantum neural network, on both classical problems and on an archetypal quantum problem: the computation of an entanglement witness. The quantum network is shown to need far fewer epochs and a much smaller network to achieve comparable or better results.The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calculations there will be a "quantum advantage," once an algorithm is found. One way to answer the question is to find those algorithms, but finding truly quantum algorithms turns out to be very difficult. In previous work, over the past three decades, we have pursued the idea of using techniques of machine learning to develop algorithms for quantum computing. Here, we compare the performance of standard real- and complex-valued classical neural networks with that of one of our models for a quantum neural network, on both classical problems and on an archetypal quantum problem: the computation of an entanglement witness. The quantum network is shown to need far fewer epochs and a much smaller network to achieve comparable or better results.
Author Steck, J. E.
Behrman, E. C.
Nguyen, Nam H.
Moustafa, Mohamed A.
Author_xml – sequence: 1
  givenname: Nam H.
  surname: Nguyen
  fullname: Nguyen, Nam H.
  organization: Department of Mathematics and Physics, Wichita State University, Wichita, KS, USA
– sequence: 2
  givenname: E. C.
  orcidid: 0000-0002-6195-9122
  surname: Behrman
  fullname: Behrman, E. C.
  email: elizabeth.behrman@wichita.edu
  organization: Department of Mathematics and Physics, Wichita State University, Wichita, KS, USA
– sequence: 3
  givenname: Mohamed A.
  surname: Moustafa
  fullname: Moustafa, Mohamed A.
  organization: Department of Aerospace Engineering, Wichita State University, Wichita, KS, USA
– sequence: 4
  givenname: J. E.
  surname: Steck
  fullname: Steck, J. E.
  organization: Department of Aerospace Engineering, Wichita State University, Wichita, KS, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31484135$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNU_Kj-AQUpePHSms_d5KjFqlAqooK3kN3M6trdTU12Ef-9qW099GAuE8LzzGTeQ9RrXAMInRA8IgSry-fZbPo0opioEVWMMcV30AElCR1SJmXv756-7qPjED5wPAkWCVd7aJ8RLjlh4gCJa2jy99r4edm8DWbQeVPF0n45Pw-DifODx840bVcPxq5edK1pS9eEI7RbmCrA8br20cvk5nl8N5w-3N6Pr6bDnAnSDglkFmRheCEEk7myaSat4WkGRUqUBEspNlZyhUkCMseqsFmWkvjGC2DWsj66WPVdePfZQWh1XYYcqso04LqgKZWCYMKUiOj5FvrhOt_E32nK4xwiKE4idbamuqwGqxe-jLt_600gEZArIPcuBA-FzsvV0q03ZaUJ1sv49W_8ehm_XscfVbqlbrr_K52upBIA_gQpKU0i8gMT44-b
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106348
crossref_primary_10_1080_0951192X_2023_2294441
crossref_primary_10_1088_2632_2153_acd048
crossref_primary_10_1109_TCOMM_2024_3469555
crossref_primary_10_1109_TNNLS_2021_3077188
crossref_primary_10_1088_1742_6596_1549_4_042005
crossref_primary_10_1109_TCYB_2021_3131252
crossref_primary_10_1109_TNNLS_2023_3240238
crossref_primary_10_1109_TGRS_2021_3110056
crossref_primary_10_1109_TVT_2023_3280459
crossref_primary_10_1109_TNNLS_2022_3208313
crossref_primary_10_1109_TNNLS_2023_3312170
crossref_primary_10_1016_j_eswa_2019_112845
crossref_primary_10_1109_TNNLS_2024_3382174
crossref_primary_10_1109_TWC_2024_3396437
crossref_primary_10_1109_TNNLS_2023_3275075
crossref_primary_10_1109_TNNLS_2025_3545545
crossref_primary_10_1109_TMC_2023_3321467
crossref_primary_10_1109_TNNLS_2023_3290535
crossref_primary_10_1007_s42484_020_00013_x
Cites_doi 10.1111/j.1469-1809.1936.tb02137.x
10.1103/PhysRevA.64.022319
10.1080/00107514.2014.964942
10.1109/SFCS.1994.365700
10.1007/BF02650179
10.1162/089976603321891846
10.1007/978-3-642-20353-4
10.1103/PhysRevLett.114.110504
10.1007/s10994-012-5316-5
10.1007/s11128-017-1692-x
10.1103/PhysRevLett.78.2275
10.1016/j.asoc.2016.04.024
10.1063/1.445732
10.1103/PhysRevX.8.021050
10.1016/S1076-5670(08)70147-2
10.1103/PhysRevA.94.022342
10.1145/237814.237866
10.1103/PhysRevLett.104.063603
10.1088/1367-2630/17/2/022005
10.1126/science.1252319
10.1103/PhysRevA.54.1098
10.1007/BF02551274
10.1137/S0097539796300921
10.1103/PhysRevLett.80.2245
10.1103/PhysRevA.81.052319
10.1016/j.swevo.2013.11.002
10.1109/ICASSP.2001.941159
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2933394
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2531
ExternalDocumentID 31484135
10_1109_TNNLS_2019_2933394
8822629
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-1ebde8fa4f5538c9d7b8da47bef7198ed220ad849016e8c09fdbb710ad4fe3dd3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546986600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 14:35:02 EDT 2025
Sun Nov 30 04:51:49 EST 2025
Thu Jan 02 23:03:07 EST 2025
Sat Nov 29 01:40:04 EST 2025
Tue Nov 18 22:13:15 EST 2025
Wed Aug 27 02:36:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-1ebde8fa4f5538c9d7b8da47bef7198ed220ad849016e8c09fdbb710ad4fe3dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6195-9122
PMID 31484135
PQID 2422015206
PQPubID 85436
PageCount 10
ParticipantIDs proquest_journals_2422015206
proquest_miscellaneous_2285101395
ieee_primary_8822629
crossref_citationtrail_10_1109_TNNLS_2019_2933394
crossref_primary_10_1109_TNNLS_2019_2933394
pubmed_primary_31484135
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References schützhold (ref12) 2002
ref15
ref14
trugenberger (ref13) 2002
ref54
ref10
(ref31) 2000
ref18
bravyi (ref5) 2017
harris (ref45) 2012
ref51
ref50
ref46
(ref53) 2018
sands (ref48) 1964; 3
ref47
thompson (ref26) 0
ref42
ref41
peres (ref36) 1995
seow (ref44) 2015
ref49
nielsen (ref27) 2001
behrman (ref11) 1996
arunaschalam (ref16) 2017
ref8
ref7
behrman (ref39) 2017; 17
ref4
ref3
ref6
nguyen (ref35) 0
biamonte (ref17) 2018
behrman (ref28) 2016
ref34
ref30
ref33
ref32
ref2
ref1
nguyen (ref40) 0
ref24
lecun (ref38) 1988
ref25
(ref43) 2018
ref22
nguyen (ref29) 2016
ref21
behrman (ref20) 2008; 8
behrman (ref23) 2013; 13
chrisley (ref9) 1995
werbos (ref37) 1992
(ref52) 2018
behrman (ref19) 2002
References_xml – year: 2002
  ident: ref19
  article-title: A quantum neural network computes entanglement
  publication-title: arXiv 0202131
– ident: ref46
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref8
  doi: 10.1103/PhysRevA.64.022319
– year: 2015
  ident: ref44
  article-title: Efficient learning algorithm for quantum perceptron unitary weights
  publication-title: arXiv 1512 00522
– year: 0
  ident: ref35
  publication-title: A universal physically implementable quantum neural network
– ident: ref15
  doi: 10.1080/00107514.2014.964942
– ident: ref2
  doi: 10.1109/SFCS.1994.365700
– year: 0
  ident: ref40
  article-title: Complexity and power of quantum neural networks
– ident: ref1
  doi: 10.1007/BF02650179
– ident: ref33
  doi: 10.1162/089976603321891846
– ident: ref34
  doi: 10.1007/978-3-642-20353-4
– ident: ref25
  doi: 10.1103/PhysRevLett.114.110504
– start-page: 77
  year: 1995
  ident: ref9
  article-title: Quantum learning
  publication-title: New Directions in Cognitive Science Proceedings of the International Symposium 4-9 August 1995 Saariselkä Lapland Finland
– year: 2018
  ident: ref53
  publication-title: Microsoft Quantum Development Kit
– start-page: 22
  year: 1996
  ident: ref11
  article-title: A quantum dot neural network
  publication-title: Proc 4th Workshop Phys Comput (PhysComp)
– year: 2017
  ident: ref16
  article-title: A survey of quantum learning theory
  publication-title: arXiv 1701 06806
– ident: ref18
  doi: 10.1007/s10994-012-5316-5
– start-page: 129
  year: 2012
  ident: ref45
  publication-title: Digital Design and computer Architecture
– start-page: 79
  year: 1992
  ident: ref37
  publication-title: Handbook of Intelligent Control
– ident: ref22
  doi: 10.1007/s11128-017-1692-x
– year: 1995
  ident: ref36
  publication-title: Quantum Theory Concepts and Methods
– year: 2002
  ident: ref13
  article-title: Quantum pattern recognition
  publication-title: arXiv 0210176v2
– year: 2017
  ident: ref5
  article-title: Quantum advantage with shallow circuits
  publication-title: arXiv 1704 00690v1
– ident: ref49
  doi: 10.1103/PhysRevLett.78.2275
– ident: ref42
  doi: 10.1016/j.asoc.2016.04.024
– volume: 17
  start-page: 469
  year: 2017
  ident: ref39
  article-title: Learning quantum annealing
  publication-title: Quant Inf Comput
– ident: ref47
  doi: 10.1063/1.445732
– ident: ref54
  doi: 10.1103/PhysRevX.8.021050
– ident: ref10
  doi: 10.1016/S1076-5670(08)70147-2
– ident: ref14
  doi: 10.1103/PhysRevA.94.022342
– start-page: 21
  year: 1988
  ident: ref38
  article-title: A theoretical framework for back-propagation
  publication-title: Proc Connectionist Models Summer School
– year: 2018
  ident: ref17
  article-title: Quantum machine learning
  publication-title: arXiv 1611 09347
– volume: 13
  start-page: 36
  year: 2013
  ident: ref23
  article-title: Multiqubit entanglement of a general input state
  publication-title: Quantum Inf Comput
– ident: ref3
  doi: 10.1145/237814.237866
– year: 2016
  ident: ref29
  article-title: Quantum learning with noise and decoherence: A robust quantum neural network
  publication-title: arXiv 1612 07593
– ident: ref21
  doi: 10.1103/PhysRevLett.104.063603
– ident: ref24
  doi: 10.1088/1367-2630/17/2/022005
– ident: ref6
  doi: 10.1126/science.1252319
– ident: ref7
  doi: 10.1103/PhysRevA.54.1098
– year: 2002
  ident: ref12
  article-title: Pattern recognition on a quantum computer
  publication-title: arXiv 0208063
– year: 0
  ident: ref26
  article-title: Experimental pairwise entanglement estimation for an N-qubit system: A machine learning approach for programming quantum hardware
  publication-title: Quantum Inf Comput
– ident: ref30
  doi: 10.1007/BF02551274
– start-page: 3
  year: 2016
  ident: ref28
  article-title: Quantum neural computation of entanglement is robust to noise and decoherence
  publication-title: Quantum Inspired Computational Intelligence Research and Applications
– year: 2018
  ident: ref43
  publication-title: Iris flower data set
– ident: ref4
  doi: 10.1137/S0097539796300921
– volume: 8
  start-page: 12
  year: 2008
  ident: ref20
  article-title: Quantum algorithm design using dynamic learning
  publication-title: Quantum Inf Comput
– volume: 3
  year: 1964
  ident: ref48
  publication-title: The Feynman Lectures on Physics
– ident: ref51
  doi: 10.1103/PhysRevLett.80.2245
– ident: ref50
  doi: 10.1103/PhysRevA.81.052319
– year: 2000
  ident: ref31
  publication-title: Getting Started A Tutorial for Neuralworks Professional II/PLUS
– year: 2018
  ident: ref52
  publication-title: The IBM Quantum Experience
– ident: ref41
  doi: 10.1016/j.swevo.2013.11.002
– year: 2001
  ident: ref27
  publication-title: Quantum Computation and Quantum Information
– ident: ref32
  doi: 10.1109/ICASSP.2001.941159
SSID ssj0000605649
Score 2.5363064
Snippet The power of quantum computers is still somewhat speculative. Although they are certainly faster than classical ones at some tasks, the class of problems they...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2522
SubjectTerms Algorithms
Benchmark testing
Benchmarking
Biological neural networks
complex neural network
complexity
Complexity theory
Computer simulation
Computers
entanglement
Learning algorithms
Machine learning
Neural networks
quantum computation
Quantum computers
Quantum computing
Quantum entanglement
quantum machine learning
quantum neural network
Title Benchmarking Neural Networks For Quantum Computations
URI https://ieeexplore.ieee.org/document/8822629
https://www.ncbi.nlm.nih.gov/pubmed/31484135
https://www.proquest.com/docview/2422015206
https://www.proquest.com/docview/2285101395
Volume 31
WOSCitedRecordID wos000546986600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2iQdeGDA-uo2pSLxBtzZJ8_EIiBMPUwViSPdW5cMRSNsdurvy9-OkvUpIgMRTK9VuKyeOf3bsGOAVRsOi1eSpCs8rwZ2unOSuksr51trAvM-Fwteq6_RyaT4dwJu5FgYRc_IZXqbbvJcf1n5IobIrQoNMMnMIh0rJsVZrjqfUhMtlRruskaxiXC33NTK1ubrpuusvKZHLXJJ949yI3-xQbqzyd4yZbc3i-P_-8iE8mDBl-XacBI_gAFeP4Xjfr6Gc1PcE2nd0_XZnc3i8TMdyEFc35oFvy8V6U34eSNDDXTnyjsG8J_B18eHm_cdqaptQed42u6pBF1BHK2JLq5k3QTkdrFAOo2qMxsBYbYMWhAQkal-bGJwjoGGDiMhD4E_haLVe4XMosUl1ul4mECIcj5b0N0RdBxRWOa4KaPZC7P10pnhqbXHbZ9-iNn0WfJ8E30-CL-D1zPNjPFHjn9QnScIz5STcAs73Y9VPSrftCW0Qa8tqWcDL-TGpS9oDsStcD0TDdFqFuGkLeDaO8fxuTq4h2fT29M_fPIP7LDnbOVf3HI52mwFfwD3_c_d9u7mgObnUF3lO_gL77t0D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGhsReGGMwysZWJN6gW5ukbfI4pp2GOCoQh3RvVT4cgcTu0N2Vvx8n7VVCAiSeWql2Wzlx_LNjxwCv0CvmtSRPVVieCW5kZipusqo2ttTaMWtjofC0bho5n6uPO_BmrIVBxJh8hhfhNu7lu6XtQqjsktAgq5i6B3ulECzvq7XGiEpOyLyKeJcVFcsYr-fbKplcXc6aZvo5pHKpC7JwnCvxmyWKrVX-jjKjtZkc_N9_PoKHA6pMr_ppcAg7uHgMB9uODemgwEdQvqXr1zsdA-RpOJiDuJo-E3ydTpar9FNHou7u0p63D-c9gS-Tm9n1bTY0TsgsL4tNVqBxKL0WvqT1zCpXG-m0qA36ulASHWO5dlIQFqhQ2lx5ZwxBDe2ER-4cfwq7i-UCn0GKRajUtVWAIcJwr0mDnZe5Q6Frw-sEiq0QWzucKh6aW3xvo3eRqzYKvg2CbwfBJ_B65PnRn6nxT-qjIOGRchBuAqfbsWoHtVu3hDeItWR5lcDL8TEpTNgF0QtcdkTDZFiHuCoTOO7HeHw3J-eQrHr5_M_fPIcHt7MP03b6rnl_AvssuN4xc_cUdjerDl_Afftz8229Oosz8xdspt9i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Neural+Networks+For+Quantum+Computations&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Nguyen%2C+Nam+H&rft.au=Behrman%2C+E+C&rft.au=Moustafa%2C+Mohamed+A&rft.au=Steck%2C+J+E&rft.date=2020-07-01&rft.eissn=2162-2388&rft_id=info:doi/10.1109%2FTNNLS.2019.2933394&rft_id=info%3Apmid%2F31484135&rft.externalDocID=31484135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon