A Novel Linelet-Based Representation for Line Segment Detection

This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a nu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 40; číslo 5; s. 1195 - 1208
Hlavní autori: Nam-Gyu Cho, Yuille, Alan, Seong-Whan Lee
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a numerical evaluation on real images, we propose a new benchmark dataset of real images with annotated lines called YorkUrban-LineSegment. The results show that the proposed method outperforms state-of-the-art methods numerically and visually. To our best knowledge, this is the first report of numerical evaluation of line segment detection on real images.
AbstractList This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a numerical evaluation on real images, we propose a new benchmark dataset of real images with annotated lines called YorkUrban-LineSegment. The results show that the proposed method outperforms state-of-the-art methods numerically and visually. To our best knowledge, this is the first report of numerical evaluation of line segment detection on real images.This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a numerical evaluation on real images, we propose a new benchmark dataset of real images with annotated lines called YorkUrban-LineSegment. The results show that the proposed method outperforms state-of-the-art methods numerically and visually. To our best knowledge, this is the first report of numerical evaluation of line segment detection on real images.
This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a numerical evaluation on real images, we propose a new benchmark dataset of real images with annotated lines called YorkUrban-LineSegment. The results show that the proposed method outperforms state-of-the-art methods numerically and visually. To our best knowledge, this is the first report of numerical evaluation of line segment detection on real images.
Author Nam-Gyu Cho
Yuille, Alan
Seong-Whan Lee
Author_xml – sequence: 1
  surname: Nam-Gyu Cho
  fullname: Nam-Gyu Cho
  email: southq@korea.ac.kr
  organization: Dept. of Brain & Cognitive Eng., Korea Univ., Seoul, South Korea
– sequence: 2
  givenname: Alan
  surname: Yuille
  fullname: Yuille, Alan
  email: yuille@stat.ucla.edu
  organization: Depts. of Cognitive Sci. & Comput. Sci., John Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  surname: Seong-Whan Lee
  fullname: Seong-Whan Lee
  email: sw.lee@korea.ac.kr
  organization: Dept. of Brain & Cognitive Eng., Korea Univ., Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28504933$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr4zAURsWQMkkff2AGBkM33TjVvbIsaTVk-gykD9rOWsjyzeDg2BnJKfTf12nSLrroSiCdc9H9vn02aNqGGPsBfAzAzenT_eRmOkYOaoyKC53BNzZCyHlq0OCAjTjkmGqNesj2Y1xwDpnk4jsbopY8M0KM2O9Jcts-U53MqoZq6tI_LlKZPNAqUKSmc13VNsm8DW9A8kj_lv1tck4d-c3TIdubuzrS0e48YH8vL57OrtPZ3dX0bDJLvZDQpUDOl6CKrHBQeO01IUlZOlSZ8QoRSThd-FIAApGWUpucqzn0C3DtvBAH7GQ7dxXa_2uKnV1W0VNdu4badbSgjcm4zFTeo8ef0EW7Dk3_O4ug-gSUMLKnfu2odbGk0q5CtXThxb5H0wN6C_jQxhhobn21jaMLrqotcLtpwb61YDct2F0LvYqf1PfpX0o_t1JFRB-CMphnEsQrjIqQQw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1111_tgis_70015
crossref_primary_10_1109_LSP_2025_3562826
crossref_primary_10_1049_ipr2_12031
crossref_primary_10_1016_j_eswa_2025_129417
crossref_primary_10_1109_TPAMI_2023_3334877
crossref_primary_10_1109_JPHOT_2019_2940689
crossref_primary_10_1016_j_isprsjprs_2023_08_003
crossref_primary_10_1109_TGRS_2022_3197055
crossref_primary_10_1007_s11760_025_04339_6
crossref_primary_10_1016_j_image_2025_117310
crossref_primary_10_1016_j_micpro_2019_102874
crossref_primary_10_1016_j_sigpro_2025_109950
crossref_primary_10_1109_TGRS_2023_3315677
crossref_primary_10_1016_j_patrec_2018_06_031
crossref_primary_10_1016_j_actaastro_2023_11_049
crossref_primary_10_1007_s10462_022_10189_2
crossref_primary_10_1016_j_autcon_2021_103939
crossref_primary_10_1016_j_image_2019_01_002
crossref_primary_10_1007_s11227_023_05615_3
crossref_primary_10_1016_j_eswa_2025_127574
crossref_primary_10_1016_j_isprsjprs_2024_10_001
crossref_primary_10_1007_s11042_024_18146_7
crossref_primary_10_1016_j_procs_2023_08_177
crossref_primary_10_3390_s23198208
crossref_primary_10_1016_j_patcog_2024_110286
crossref_primary_10_1109_TPAMI_2024_3400881
crossref_primary_10_1134_S1054661821040222
crossref_primary_10_3390_f12010030
crossref_primary_10_1109_TPAMI_2019_2958642
crossref_primary_10_1117_1_JEI_31_4_043019
crossref_primary_10_3390_aerospace10020195
crossref_primary_10_1016_j_isprsjprs_2021_06_004
crossref_primary_10_1109_TIM_2025_3548241
crossref_primary_10_1109_ACCESS_2020_2977119
crossref_primary_10_3390_s23031536
crossref_primary_10_3390_rs14225842
crossref_primary_10_1109_LSP_2023_3346281
crossref_primary_10_1109_JSTARS_2018_2886000
crossref_primary_10_1109_TIM_2023_3328094
crossref_primary_10_1109_TRO_2021_3061403
crossref_primary_10_1155_2020_9966311
crossref_primary_10_1109_ACCESS_2020_3033559
crossref_primary_10_1109_TIV_2023_3311511
Cites_doi 10.1016/0031-3203(81)90009-1
10.1109/TSMC.2015.2415764
10.1016/j.cviu.2011.03.010
10.1109/34.491623
10.1109/TPAMI.2011.220
10.1109/TPAMI.2008.300
10.1006/cviu.1999.0831
10.1109/TPAMI.1986.4767851
10.1109/CVPR.2014.489
10.1109/TIP.2013.2246522
10.1109/CVPR.2014.119
10.1016/j.patrec.2011.06.001
10.1109/TPAMI.2011.130
10.1109/CVPR.2014.72
10.1109/TPAMI.2011.70
10.1109/TPAMI.1984.4767550
10.1109/TPAMI.1986.4767808
10.1109/CVPR.2009.5206848
10.1109/CVPR.2011.5995501
10.1007/s11263-009-0275-4
10.1109/TIP.2012.2202673
10.1007/978-3-642-19318-7_26
10.1109/CVPR.2013.181
10.1109/TPAMI.2010.161
10.1007/978-3-540-71457-6_53
10.1109/ICCV.2013.67
10.1162/089976603765202668
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2017.2703841
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1208
ExternalDocumentID 28504933
10_1109_TPAMI_2017_2703841
7926451
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Korea government (MSIP)
  grantid: 2016-0-00152
– fundername: US National Science Foundation Expedition in Computing ”Visual Cortex on Silicon”
  grantid: CCF-1317376
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-1eacd17b4ba1bc8c8e2e55da2749c7222e3a8bcd3121ee85589607f116208ac33
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428901200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 08:08:27 EDT 2025
Sun Nov 09 06:56:48 EST 2025
Tue Apr 08 05:57:01 EDT 2025
Tue Nov 18 21:01:02 EST 2025
Sat Nov 29 05:15:57 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-1eacd17b4ba1bc8c8e2e55da2749c7222e3a8bcd3121ee85589607f116208ac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6249-4996
0000-0001-7591-9220
PMID 28504933
PQID 2174507395
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_1899405476
crossref_citationtrail_10_1109_TPAMI_2017_2703841
ieee_primary_7926451
pubmed_primary_28504933
proquest_journals_2174507395
crossref_primary_10_1109_TPAMI_2017_2703841
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref10
ref2
ref1
ref16
ref19
ref18
denis (ref22) 2008
hough (ref24) 1959
ref23
ref26
ref25
ref20
ref21
ref28
ref27
kanizsa (ref30) 1979
ref29
bradski (ref32) 2000; 25
ref8
ref7
desolneux (ref17) 2007
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1016/0031-3203(81)90009-1
– ident: ref19
  doi: 10.1109/TSMC.2015.2415764
– ident: ref12
  doi: 10.1016/j.cviu.2011.03.010
– ident: ref20
  doi: 10.1109/34.491623
– ident: ref4
  doi: 10.1109/TPAMI.2011.220
– ident: ref16
  doi: 10.1109/TPAMI.2008.300
– ident: ref11
  doi: 10.1006/cviu.1999.0831
– ident: ref25
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref9
  doi: 10.1109/CVPR.2014.489
– ident: ref13
  doi: 10.1109/TIP.2013.2246522
– ident: ref27
  doi: 10.1109/CVPR.2014.119
– ident: ref18
  doi: 10.1016/j.patrec.2011.06.001
– ident: ref26
  doi: 10.1109/TPAMI.2011.130
– ident: ref7
  doi: 10.1109/CVPR.2014.72
– year: 2007
  ident: ref17
  publication-title: From Gestalt Theory to Image Analysis A Probabilistic Approach
– ident: ref3
  doi: 10.1109/TPAMI.2011.70
– ident: ref23
  doi: 10.1109/TPAMI.1984.4767550
– ident: ref15
  doi: 10.1109/TPAMI.1986.4767808
– ident: ref29
  doi: 10.1109/CVPR.2009.5206848
– volume: 25
  start-page: 120
  year: 2000
  ident: ref32
  article-title: The opencv library
  publication-title: Dr Dobb's J
– ident: ref21
  doi: 10.1109/CVPR.2011.5995501
– ident: ref28
  doi: 10.1007/s11263-009-0275-4
– ident: ref14
  doi: 10.1109/TIP.2012.2202673
– ident: ref8
  doi: 10.1007/978-3-642-19318-7_26
– year: 1979
  ident: ref30
  publication-title: Organization in Vision Essays on Gestalt Perception
– ident: ref6
  doi: 10.1109/CVPR.2013.181
– ident: ref1
  doi: 10.1109/TPAMI.2010.161
– ident: ref2
  doi: 10.1007/978-3-540-71457-6_53
– ident: ref5
  doi: 10.1109/ICCV.2013.67
– ident: ref31
  doi: 10.1162/089976603765202668
– start-page: 197
  year: 2008
  ident: ref22
  article-title: Efficient edge-based methods for estimating manhattan frames in urban imagery
  publication-title: Proc 10th Eur Conf Comput Vis
– start-page: 554
  year: 1959
  ident: ref24
  article-title: Machine analysis of bubble chamber pictures
  publication-title: Proc Int Conf High Energy Accelerators Instrum
SSID ssj0014503
Score 2.5617826
Snippet This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1195
SubjectTerms Benchmark testing
Digital images
Digital imaging
Electronic mail
Estimation
Image detection
Image edge detection
Image segmentation
Intrinsic properties of digital line
line segment validation
Mathematical models
Nonlinear programming
Numerical methods
probabilistic line segment representation
Representations
State of the art
Visualization
Title A Novel Linelet-Based Representation for Line Segment Detection
URI https://ieeexplore.ieee.org/document/7926451
https://www.ncbi.nlm.nih.gov/pubmed/28504933
https://www.proquest.com/docview/2174507395
https://www.proquest.com/docview/1899405476
Volume 40
WOSCitedRecordID wos000428901200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BtQd4oIzClq1DRuINUuokru2nqbCh8UCFtiL1LXKcC5qE0omm_P2cnQ8xCZB4ixTHtu4jdz_fnQ_guDAu9haZUE8SGzohCTNljEumyrR1HoLNfLMJOZupxULfbMBpVwuDiD75DEfu0cfy86Vdu6OyM6lpClcvvSmlrGu1uohBInwXZPJgSMMJRrQFMmN9Nr-ZXl-5LC45ikjAVeLaw0RKkHMcx__ZI99g5XVf09ucy_77drsLO41vyaa1MHyEDSz3oN_2bWCNGu_B9rNLCAfwfcpmy0e8ZwRLyQZV4TkZtpz99imyTWVSyci39QPYH7xz67IfWPksrnIfbi9_zi9-hU1bhdDGglchp39tzmWWZIZnVlmFEQqRG8Kn2kryFzA2KrN5zCOOqIRQhHJkwYmyY2VsHB9Ar1yW-BlYXphJlBvCHIUmoDjWtuAiswXG2mJe2AB4S9zUNneOu9YX96nHHmOdet6kjjdpw5sATrpv_tU3brw5euAo341siB7AsOVh2ijlKnXoS_jIZABH3WtSJxcjMSUu16uUE_4kCU3kJIBPNe-7uVuR-fLyml9hi3am6mzIIfSqhzV-gw_2sfq7ejgkmV2oQy-zT4rq5Ck
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9EBc8H9fTU-nGXA9-86qZttsmTrHqinC6ie-BbSNOpCNIVt-vf7yT9QME78K3QNAnz0ZlfZiYDsFcYF3uLTKj6iQ2dkISZNMYlU2XKOg_BZr7ZRDocyrs7dT0Dv7paGET0yWd44B59LD8f26k7KjtMFU3h6qXnRJJEvK7W6mIGifB9kMmHIR0nINGWyPTU4eh6cHXh8rjSg4hEXCauQUwkBbnHcfzOIvkWK__2Nr3VOVv-3H5XYKnxLtmgFoevMIPlKiy3nRtYo8irsPjmGsI1OBqw4fgFHxkBU7JCVXhMpi1nNz5JtqlNKhl5t34Au8V7ty47xcrncZXf4O_Z79HJedg0VghtLHgVcvrb5jzNkszwzEorMUIhckMIVdmUPAaMjcxsHvOII0ohJOGctOBE2Z40No7XYbYcl7gJLC9MP8oNoY5CEVTsKVtwkdkCY2UxL2wAvCWuts2t4675xaP26KOntOeNdrzRDW8C2O--earv3Pjv6DVH-W5kQ_QAdloe6kYtJ9rhL-FjkwH87F6TQrkoiSlxPJ1oTgiUZDRJ-wFs1Lzv5m5FZuvjNX_Awvno6lJfXgz_bMMX2qWscyN3YLZ6nuIuzNuX6mHy_N1L7iswAOaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Linelet-Based+Representation+for+Line+Segment+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Cho%2C+Nam-Gyu&rft.au=Yuille%2C+Alan&rft.au=Lee%2C+Seong-Whan&rft.date=2018-05-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=40&rft.issue=5&rft.spage=1195&rft_id=info:doi/10.1109%2FTPAMI.2017.2703841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon