Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder

Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of mach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 4; S. 4852 - 4861
Hauptverfasser: Li, Chunyan, Yao, Junfeng, Wei, Wei, Niu, Zhangming, Zeng, Xiangxiang, Li, Jin, Wang, Jianmin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of machine learning, it includes continuous feature embedding encoder and molecular generation decoder. Our key contribution is to propose an efficient geometric embedding method, including the spatial structure representations of drug molecule (converting the 3-D coordinates into image) and the geometric graph representations of protein target (modeling the protein surface as a mesh). The 3-D geometric information is vital to successful molecular generation, which is different from previous molecular generative methods based on 1-D or 2-D. Our model framework generates specific molecules in two phases, by first generating special image with molecular 3-D information to learn latent representations and generating molecules with constrained condition based on geometric graph convolution for specific protein and then inputting the generated structural molecules into a parser network for obtaining Simplified Molecular Input Line Entry System (SMILES) strings. Our model achieves competitive performance that implies its potential effectiveness to enable the exploration of the vast chemical space for drug discovery.
AbstractList Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of machine learning, it includes continuous feature embedding encoder and molecular generation decoder. Our key contribution is to propose an efficient geometric embedding method, including the spatial structure representations of drug molecule (converting the 3-D coordinates into image) and the geometric graph representations of protein target (modeling the protein surface as a mesh). The 3-D geometric information is vital to successful molecular generation, which is different from previous molecular generative methods based on 1-D or 2-D. Our model framework generates specific molecules in two phases, by first generating special image with molecular 3-D information to learn latent representations and generating molecules with constrained condition based on geometric graph convolution for specific protein and then inputting the generated structural molecules into a parser network for obtaining Simplified Molecular Input Line Entry System (SMILES) strings. Our model achieves competitive performance that implies its potential effectiveness to enable the exploration of the vast chemical space for drug discovery.
Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of machine learning, it includes continuous feature embedding encoder and molecular generation decoder. Our key contribution is to propose an efficient geometric embedding method, including the spatial structure representations of drug molecule (converting the 3-D coordinates into image) and the geometric graph representations of protein target (modeling the protein surface as a mesh). The 3-D geometric information is vital to successful molecular generation, which is different from previous molecular generative methods based on 1-D or 2-D. Our model framework generates specific molecules in two phases, by first generating special image with molecular 3-D information to learn latent representations and generating molecules with constrained condition based on geometric graph convolution for specific protein and then inputting the generated structural molecules into a parser network for obtaining Simplified Molecular Input Line Entry System (SMILES) strings. Our model achieves competitive performance that implies its potential effectiveness to enable the exploration of the vast chemical space for drug discovery.Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of machine learning, it includes continuous feature embedding encoder and molecular generation decoder. Our key contribution is to propose an efficient geometric embedding method, including the spatial structure representations of drug molecule (converting the 3-D coordinates into image) and the geometric graph representations of protein target (modeling the protein surface as a mesh). The 3-D geometric information is vital to successful molecular generation, which is different from previous molecular generative methods based on 1-D or 2-D. Our model framework generates specific molecules in two phases, by first generating special image with molecular 3-D information to learn latent representations and generating molecules with constrained condition based on geometric graph convolution for specific protein and then inputting the generated structural molecules into a parser network for obtaining Simplified Molecular Input Line Entry System (SMILES) strings. Our model achieves competitive performance that implies its potential effectiveness to enable the exploration of the vast chemical space for drug discovery.
Author Zeng, Xiangxiang
Niu, Zhangming
Wei, Wei
Wang, Jianmin
Li, Chunyan
Li, Jin
Yao, Junfeng
Author_xml – sequence: 1
  givenname: Chunyan
  orcidid: 0000-0003-3014-3363
  surname: Li
  fullname: Li, Chunyan
  organization: School of Informatics, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Junfeng
  orcidid: 0000-0002-2330-7406
  surname: Yao
  fullname: Yao, Junfeng
  email: yao0010@xmu.edu.cn
  organization: Institute of Artificial Intelligence and the School of Film, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-7566-2995
  surname: Wei
  fullname: Wei, Wei
  email: weiwei@xaut.edu.cn
  organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Zhangming
  orcidid: 0000-0002-7009-946X
  surname: Niu
  fullname: Niu, Zhangming
  organization: MindRank AI Ltd., Hangzhou, Zhejiang, China
– sequence: 5
  givenname: Xiangxiang
  orcidid: 0000-0003-1081-7658
  surname: Zeng
  fullname: Zeng, Xiangxiang
  email: xzeng@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
– sequence: 6
  givenname: Jin
  orcidid: 0000-0002-3628-7037
  surname: Li
  fullname: Li, Jin
  organization: School of Software, Yunnan University, Kunming, China
– sequence: 7
  givenname: Jianmin
  orcidid: 0000-0001-8910-0929
  surname: Wang
  fullname: Wang, Jianmin
  organization: Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35171779$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlPwzAQhS0EomX5AyChSFy4pHiL4xyhQEEqRYj1ZjnJRAQldrGTA_8ed6EHDvjikeZ7M6P39tC2sQYQOiJ4RAjOzp9ns-nTiGJKR4zwNM3wFhpSImhMmZTbmzp9H6BD7z9xeAIngme7aMASkpKgGaLHCdgWOvcdX2oPZXRvGyj6RrtoAgac7mprore6-4iuAObR2BrfOV2bgL5qVy_7uoku-s6CKWwJ7gDtVLrxcLj-99HLzfXz-DaePkzuxhfTuAjbu5iUXISCA0iaFbQUPGdlQijGSZ6ESzMKaVnpnGQ54yArEiCeS8oFVBLjnO2js9XcubNfPfhOtbUvoGm0Adt7RQXNZEKF5AE9_YN-2t6Fu71imDFBccpZoE7WVJ-3UKq5q1vtvtWvWQGQK6Bw1nsHlSrqbunAwpJGEawW0ahlNGoRjVpHE6T0j_R3-r-i45WoBoCNIEtDm0j2A-ogl_s
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11030_024_10942_5
crossref_primary_10_1080_02648725_2023_2196476
crossref_primary_10_1016_j_jpha_2025_101325
crossref_primary_10_1016_j_drudis_2024_104024
crossref_primary_10_1016_j_ces_2025_122575
crossref_primary_10_1016_j_bspc_2024_106467
crossref_primary_10_1080_07391102_2023_2295974
crossref_primary_10_1109_TNNLS_2024_3445136
crossref_primary_10_1109_TKDE_2025_3591732
crossref_primary_10_1007_s11432_024_4461_0
crossref_primary_10_1038_s43588_023_00548_6
crossref_primary_10_1038_s41529_024_00518_x
crossref_primary_10_1111_tgis_13269
crossref_primary_10_1038_s42004_023_00825_5
crossref_primary_10_1109_JBHI_2024_3383245
crossref_primary_10_1002_cjce_25687
crossref_primary_10_1109_TNNLS_2024_3506619
Cites_doi 10.1021/acs.jcim.8b00706
10.3844/jcssp.2020.1195.1202
10.1038/nrd3078
10.48550/arXiv.1606.09375
10.1007/s11047-020-09801-7
10.1145/258734.258849
10.1109/MSP.2017.2693418
10.1073/pnas.0906146106
10.1021/acs.jcim.9b01120
10.1038/s41592-019-0666-6
10.1016/j.neunet.2020.04.028
10.1021/acs.jmedchem.7b00696
10.48550/ARXIV.1609.02907
10.1093/bib/bbab078
10.48550/arXiv.1312.6203
10.1145/3388440.3412471
10.1021/ci100050t
10.1109/jbhi.2021.3089162
10.1145/3394486.3403104
10.1093/nar/gkm276
10.48550/arXiv.1312.6114
10.1038/s41467-020-20549-7
10.1021/acscentsci.7b00572
10.1101/2020.04.06.028266
10.1007/978-3-030-01418-6_41
10.1016/j.csbj.2019.12.011
10.1021/ci00057a005
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
10.1186/s13321-017-0235-x
10.1073/pnas.181342398
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3147790
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4861
ExternalDocumentID 35171779
10_1109_TNNLS_2022_3147790
9714718
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Industry Guidance Project Foundation of Science Technology Bureau of Fujian Province
  grantid: 2020H0047
– fundername: Natural Science Foundation of Science Technology Bureau of Fujian Province
  grantid: 2019J01601
– fundername: National Natural Science Foundation of China
  grantid: 62072388; 62122025; 61872309; 61972138; 62102140
  funderid: 10.13039/501100001809
– fundername: Fujian Sunshine Charity Foundation
– fundername: Fundamental Research Project of Yunnan Province
  grantid: 202001BB050052
– fundername: Hunan Provincial Natural Science Foundation
  grantid: 2020JJ4215; 2021JJ10020
  funderid: 10.13039/501100004735
– fundername: Creation Fund Project of Science Technology Bureau of Fujian Province
  grantid: 2019C0021
– fundername: Collaborative Project Fund of Fuzhou-Xiamen-Quanzhou Innovation Zone
  grantid: 3502ZCQXT202001
– fundername: Scientific Research Fund of Yunnan Provincial Department of Education
  grantid: 2022J0450
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-1d463514ee829c2d64b3d512005b506092e7dfab19b34e8f19c24b8246ef800b3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 08:28:40 EDT 2025
Sun Jun 29 16:33:37 EDT 2025
Sun Apr 06 01:21:14 EDT 2025
Sat Nov 29 01:40:18 EST 2025
Tue Nov 18 21:58:06 EST 2025
Wed Aug 27 02:02:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-1d463514ee829c2d64b3d512005b506092e7dfab19b34e8f19c24b8246ef800b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7566-2995
0000-0002-2330-7406
0000-0002-7009-946X
0000-0002-3628-7037
0000-0003-1081-7658
0000-0001-8910-0929
0000-0003-3014-3363
PMID 35171779
PQID 3033620743
PQPubID 85436
PageCount 10
ParticipantIDs ieee_primary_9714718
proquest_miscellaneous_2629852684
crossref_citationtrail_10_1109_TNNLS_2022_3147790
crossref_primary_10_1109_TNNLS_2022_3147790
proquest_journals_3033620743
pubmed_primary_35171779
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Bepler (ref31)
ref12
ref34
Kusner (ref16) 2017
ref37
Liu (ref8)
ref14
ref36
Märtens (ref18) 2020
ref30
ref11
ref33
ref10
ref32
ref1
ref39
ref38
Monti (ref35) 2016
De Cao (ref19) 2018
Ma (ref17) 2018
Dai (ref15) 2018
Honda (ref23) 2019
Wang (ref46)
ref45
ref26
You (ref7)
ref25
Zhou (ref40) 2018
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref9
ref4
ref3
ref6
Popova (ref20) 2019
Li (ref43) 2018
ref5
Madhawa (ref24) 2019
Jin (ref2)
References_xml – ident: ref10
  doi: 10.1021/acs.jcim.8b00706
– ident: ref42
  doi: 10.3844/jcssp.2020.1195.1202
– volume-title: arXiv:1802.08786
  year: 2018
  ident: ref15
  article-title: Syntax-directed variational autoencoder for structured data
– ident: ref1
  doi: 10.1038/nrd3078
– ident: ref12
  doi: 10.48550/arXiv.1606.09375
– ident: ref29
  doi: 10.1007/s11047-020-09801-7
– ident: ref41
  doi: 10.1145/258734.258849
– ident: ref33
  doi: 10.1109/MSP.2017.2693418
– ident: ref37
  doi: 10.1073/pnas.0906146106
– ident: ref11
  doi: 10.1021/acs.jcim.9b01120
– ident: ref34
  doi: 10.1038/s41592-019-0666-6
– volume-title: arXiv:1611.08402
  year: 2016
  ident: ref35
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref7
  article-title: Graph convolutional policy network for goal-directed molecular graph generation
– ident: ref45
  doi: 10.1016/j.neunet.2020.04.028
– volume-title: PyMesh—Geometry Processing Library for Python
  year: 2018
  ident: ref40
– ident: ref9
  doi: 10.1021/acs.jmedchem.7b00696
– ident: ref14
  doi: 10.48550/ARXIV.1609.02907
– ident: ref5
  doi: 10.1093/bib/bbab078
– start-page: 9952
  volume-title: Proc. ICML
  ident: ref46
  article-title: Haar graph pooling
– ident: ref13
  doi: 10.48550/arXiv.1312.6203
– ident: ref28
  doi: 10.1145/3388440.3412471
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref31
  article-title: Learning protein sequence embeddings using information from structure
– volume-title: arXiv:1909.13521
  year: 2019
  ident: ref23
  article-title: Graph residual flow for molecular graph generation
– volume-title: arXiv:2003.03462
  year: 2020
  ident: ref18
  article-title: BasisVAE: Translation-invariant feature-level clustering with variational autoencoders
– volume-title: arXiv:1703.01925
  year: 2017
  ident: ref16
  article-title: Grammar variational autoencoder
– volume-title: arXiv:1905.13372
  year: 2019
  ident: ref20
  article-title: MolecularRNN: Generating realistic molecular graphs with optimized properties
– ident: ref44
  doi: 10.1021/ci100050t
– start-page: 2323
  volume-title: Proc. ICML
  ident: ref2
  article-title: Junction tree variational autoencoder for molecular graph generation
– ident: ref4
  doi: 10.1109/jbhi.2021.3089162
– ident: ref22
  doi: 10.1145/3394486.3403104
– ident: ref38
  doi: 10.1093/nar/gkm276
– volume-title: arXiv:1905.11600
  year: 2019
  ident: ref24
  article-title: GraphNVP: An invertible flow model for generating molecular graphs
– ident: ref26
  doi: 10.48550/arXiv.1312.6114
– volume-title: arXiv:1809.02630
  year: 2018
  ident: ref17
  article-title: Constrained generation of semantically valid graphs via regularizing variational autoencoders
– ident: ref27
  doi: 10.1038/s41467-020-20549-7
– ident: ref3
  doi: 10.1021/acscentsci.7b00572
– ident: ref32
  doi: 10.1101/2020.04.06.028266
– volume-title: arXiv:1803.03324
  year: 2018
  ident: ref43
  article-title: Learning deep generative models of graphs
– volume-title: arXiv:1805.11973
  year: 2018
  ident: ref19
  article-title: MolGAN: An implicit generative model for small molecular graphs
– ident: ref25
  doi: 10.1007/978-3-030-01418-6_41
– ident: ref30
  doi: 10.1016/j.csbj.2019.12.011
– ident: ref6
  doi: 10.1021/ci00057a005
– ident: ref36
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
– start-page: 1
  volume-title: Proc. Workshop Learn. Reasoning With Graph-Struct. Data (ICML)
  ident: ref8
  article-title: Towards permutation-invariant graph generation
– ident: ref21
  doi: 10.1186/s13321-017-0235-x
– ident: ref39
  doi: 10.1073/pnas.181342398
SSID ssj0000605649
Score 2.576685
Snippet Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4852
SubjectTerms Chemical properties
Chemicophysical properties
Computational modeling
Convolution
Coordinate
Decoding
Drug development
Drugs
Embedding
Feature extraction
Finite element method
geometry
graph convolutional network
Graph representations
Graphical representations
Machine learning
mesh
molecular generation
Molecular structure
Proteins
Solid modeling
Two dimensional models
variational autoencoder (VAE)
Visualization
Title Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder
URI https://ieeexplore.ieee.org/document/9714718
https://www.ncbi.nlm.nih.gov/pubmed/35171779
https://www.proquest.com/docview/3033620743
https://www.proquest.com/docview/2629852684
Volume 35
WOSCitedRecordID wos000758178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUK9tEChhJbKSNzAdONk_Ti2lMKhrECUsrfIsSeiEmyq3Wyl_nvGjhNxACRukTJxHM9M5uHxfAAvDcX-tpSSKzl1nCx-w41FyxtvjbZSKhehE64u1Gym53PzaQNej2dhEDEWn-GbcBn38n3r1iFVdmxUHv6lm7CplOrPao35lAn55TJ6uyKXgotCzYczMhNzfDmbXXyhaFAIClLL0GNvG-4X05yCmVDE9ZtJihgrf3c3o9k53_2_CT-AneRespNeHh7CBi4ewe4A3cCSJu_B5_fY_sRuecdPyYx59nFAyWV9H-rALvbtuvvOzhBvWID1jGASRHpF0XXKILKTddeGTpgel4_h6_m7y7cfeEJX4I4-vOO5L2Uo40fUwjjhZVkXnsw_qWUdug4agco3ts5NXZSom5yIylqLUmJDXmZdPIGtRbvAp8Csm3qNNIqbFqX1hWlMocl1wlzUJAmTDPJhgSuXWo-HSf-oYggyMVXkTxX4UyX-ZPBqfOamb7zxT-q9sPojZVr4DA4HPlZJN1cVGW2y2sF1yuDFeJu0KmyV2AW261UlpDA6dsLJYL_n_zj2IDbP_vzOA9immaXqnkPY6pZrfA733G13vVoekejO9VEU3V8Hw-Zs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQLAXBuyrMCBIvEHYNU3T5nF8jCFuFYhj3FvUJq6YtF2nux4S_z1O-iEeAIm3SnXTNLbrnx3HBniuyfcvpVI8U6nlZPFrrkssee1KnZdKZTa0TjifZkWRz-f60wa8HM_CIGJIPsNX_jLs5bvGrn2o7Ehnsf-X3oCbqZQi7k5rjRGVCSFzFfCuiJXgIsnmwymZiT6aFcX0C_mDQpCbKn2VvS24naQxuTM-jes3oxS6rPwdcAbDc7L9f1O-B3d7gMmOO4m4Dxu4eADbQ_MG1uvyDnx-j80Vtsuf_DUZMsfOhj65rKtE7RnGvl2039lbxGvmG3uGdhJEek7-dR9DZMfrtvG1MB0ud-HrybvZm1Pe91fglj685bGTyifyI-ZCW-GUrBJHAIAUs_J1B7XAzNVlFesqkZjXMRHJKhdSYU04s0r2YHPRLPAAWGlTlyONYtNEli7RtU5yAk8Yi4pkYRJBPCywsX3xcT_pSxOckIk2gT_G88f0_IngxfjMdVd645_UO371R8p-4SM4HPhoeu1cGTLbZLc9eIrg2Xib9MpvlpQLbNYrI5TQeaiFE8F-x_9x7EFsHv75nU_hzunsbGqmH4qPj2CLZtnn-hzCZrtc42O4ZX-0F6vlkyDAvwC9S-jL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometry-Based+Molecular+Generation+With+Deep+Constrained+Variational+Autoencoder&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Chunyan&rft.au=Yao%2C+Junfeng&rft.au=Wei%2C+Wei&rft.au=Niu%2C+Zhangming&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=4&rft.spage=4852&rft_id=info:doi/10.1109%2FTNNLS.2022.3147790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon