A New Graph Autoencoder-Based Consensus-Guided Model for scRNA-seq Cell Type Detection
Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 35; H. 2; S. 2473 - 2483 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification. |
|---|---|
| AbstractList | Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification. Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification.Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification. |
| Author | Zhang, Dai-Jun Zhao, Jing-Xiu Gao, Ying-Lian Zheng, Chun-Hou Liu, Jin-Xing |
| Author_xml | – sequence: 1 givenname: Dai-Jun orcidid: 0000-0002-3360-106X surname: Zhang fullname: Zhang, Dai-Jun email: daijunzz@126.com organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China – sequence: 2 givenname: Ying-Lian orcidid: 0000-0003-0483-5622 surname: Gao fullname: Gao, Ying-Lian email: yinliangao@126.com organization: Qufu Normal University Library, Qufu Normal University, Rizhao, Shandong, China – sequence: 3 givenname: Jing-Xiu orcidid: 0000-0002-8383-278X surname: Zhao fullname: Zhao, Jing-Xiu email: zhaojx@qfnu.edu.cn organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China – sequence: 4 givenname: Chun-Hou orcidid: 0000-0002-2695-1926 surname: Zheng fullname: Zheng, Chun-Hou email: zhengch99@126.com organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China – sequence: 5 givenname: Jin-Xing orcidid: 0000-0001-6104-2149 surname: Liu fullname: Liu, Jin-Xing email: sdcavell@126.com organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35857730$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcGO0zAQhi20iF3KvgBIyBKXvaSMx3HiHEtZClIpEhTEzXKcicgqjbt2IrRvj0tLD3tgLjMaf_94NP9zdjH4gRh7KWAuBFRvt5vN-tscAXEuRQWoqyfsCkWBGUqtL851-fOSXcd4BykKUEVePWOXUmlVlhKu2I8F39Bvvgp2_4svptHT4HxDIXtnIzV86YdIQ5xitpq6JjU-p8eetz7w6L5uFlmke76kvufbhz3x9zSSGzs_vGBPW9tHuj7lGfv-4Xa7_Jitv6w-LRfrzEklxkw0eV6jolblCqiUjQPloMEyl2ARnQCtoC5KXVeNLUTqEtZgi1Yo5USbyxm7Oc7dB38_URzNrosu7WMH8lM0WFQIJapCJ_TNI_TOT2FI2xmsUAohVUoz9vpETfWOGrMP3c6GB_PvYgnAI-CCjzFQe0YEmIMz5q8z5uCMOTmTRPqRyHWjPRxqDLbr_y99dZR2RHT-q9JSqhzkH32nl_g |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_5c00731 crossref_primary_10_1109_TCBB_2023_3328029 crossref_primary_10_1093_bib_bbaf378 crossref_primary_10_1089_cmb_2024_0512 crossref_primary_10_1109_JBHI_2024_3487174 crossref_primary_10_1109_TCBB_2024_3459960 crossref_primary_10_1016_j_bspc_2023_105785 crossref_primary_10_1109_JBHI_2024_3442468 crossref_primary_10_1109_TNNLS_2024_3412753 crossref_primary_10_1109_JBHI_2023_3262948 crossref_primary_10_1093_bib_bbae371 crossref_primary_10_1007_s12539_023_00574_y crossref_primary_10_1016_j_trsl_2024_05_013 |
| Cites_doi | 10.1093/bioinformatics/bty390 10.1016/j.yexcr.2020.111959 10.1016/j.cell.2018.02.001 10.1016/j.imu.2020.100330 10.1038/nature25980 10.3390/nu13092952 10.1109/TPAMI.2020.2974828 10.1109/tnnls.2021.3054635 10.1109/tnnls.2021.3069424 10.1109/tnnls.2021.3071369 10.1038/ncomms11075 10.1093/bib/bbab236 10.1038/npp.2015.235 10.1038/ni.3437 10.1109/tkde.2020.3048678 10.1109/TPAMI.2018.2879108 10.1093/bioinformatics/btab535 10.1109/ACCESS.2021.3049807 10.1093/bioinformatics/btx167 10.1186/s12885-020-07675-7 10.1016/j.cmet.2016.08.018 10.1016/j.cell.2019.05.031 10.3389/fgene.2019.00020 10.1109/TNNLS.2020.3016357 10.1109/TIP.2016.2553459 10.1242/jcs.243303 10.1038/nmeth.4207 10.1145/2623330.2623726 10.1126/science.1245316 10.1093/bioinformatics/btz139 10.1109/TKDE.2019.2911946 10.7150/thno.43865 10.1038/nature13173 10.1109/TMM.2018.2889560 10.1201/b19706-12 10.1093/bib/bbab319 10.1016/j.bcp.2020.114204 10.1093/bib/bbz063 10.1145/3132847.3132967 10.1109/TCYB.2016.2526683 10.1109/tcbb.2021.3126641 10.1038/nn.3881 10.1186/s13059-021-02356-5 10.1038/s41418-020-0578-0 10.1109/TIP.2019.2940693 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3190289 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2483 |
| ExternalDocumentID | 35857730 10_1109_TNNLS_2022_3190289 9833540 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62172254; 61872220 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-1d44b25ef5450e73dc05c0d27430a22c10850b678b9da61430e2b0a6f155c1f43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829206800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 17:50:01 EDT 2025 Sun Jun 29 16:48:22 EDT 2025 Thu Jan 02 22:22:40 EST 2025 Sat Nov 29 01:40:21 EST 2025 Tue Nov 18 22:43:53 EST 2025 Wed Aug 27 02:07:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-1d44b25ef5450e73dc05c0d27430a22c10850b678b9da61430e2b0a6f155c1f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3360-106X 0000-0002-2695-1926 0000-0001-6104-2149 0000-0002-8383-278X 0000-0003-0483-5622 |
| PMID | 35857730 |
| PQID | 2923113592 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2923113592 pubmed_primary_35857730 crossref_primary_10_1109_TNNLS_2022_3190289 proquest_miscellaneous_2692072568 crossref_citationtrail_10_1109_TNNLS_2022_3190289 ieee_primary_9833540 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 Huang (ref21) ref36 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Wagner (ref30) 2007 Strehl (ref31) 2003; 3 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref6 doi: 10.1093/bioinformatics/bty390 – ident: ref45 doi: 10.1016/j.yexcr.2020.111959 – ident: ref2 doi: 10.1016/j.cell.2018.02.001 – ident: ref37 doi: 10.1016/j.imu.2020.100330 – ident: ref40 doi: 10.1038/nature25980 – ident: ref43 doi: 10.3390/nu13092952 – ident: ref17 doi: 10.1109/TPAMI.2020.2974828 – ident: ref1 doi: 10.1109/tnnls.2021.3054635 – ident: ref16 doi: 10.1109/tnnls.2021.3069424 – ident: ref12 doi: 10.1109/tnnls.2021.3071369 – ident: ref27 doi: 10.1038/ncomms11075 – ident: ref33 doi: 10.1093/bib/bbab236 – ident: ref41 doi: 10.1038/npp.2015.235 – ident: ref26 doi: 10.1038/ni.3437 – start-page: 3569 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref21 article-title: A new simplex sparse learning model to measure data similarity for clustering – ident: ref19 doi: 10.1109/tkde.2020.3048678 – ident: ref20 doi: 10.1109/TPAMI.2018.2879108 – ident: ref22 doi: 10.1093/bioinformatics/btab535 – ident: ref39 doi: 10.1109/ACCESS.2021.3049807 – ident: ref5 doi: 10.1093/bioinformatics/btx167 – ident: ref44 doi: 10.1186/s12885-020-07675-7 – ident: ref29 doi: 10.1016/j.cmet.2016.08.018 – ident: ref8 doi: 10.1016/j.cell.2019.05.031 – ident: ref13 doi: 10.3389/fgene.2019.00020 – ident: ref3 doi: 10.1109/TNNLS.2020.3016357 – volume: 3 start-page: 583 year: 2003 ident: ref31 article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: ref36 doi: 10.1109/TIP.2016.2553459 – ident: ref46 doi: 10.1242/jcs.243303 – ident: ref4 doi: 10.1038/nmeth.4207 – ident: ref15 doi: 10.1145/2623330.2623726 – ident: ref24 doi: 10.1126/science.1245316 – ident: ref7 doi: 10.1093/bioinformatics/btz139 – ident: ref11 doi: 10.1109/TKDE.2019.2911946 – ident: ref47 doi: 10.7150/thno.43865 – ident: ref25 doi: 10.1038/nature13173 – ident: ref18 doi: 10.1109/TMM.2018.2889560 – ident: ref35 doi: 10.1201/b19706-12 – ident: ref10 doi: 10.1093/bib/bbab319 – ident: ref42 doi: 10.1016/j.bcp.2020.114204 – ident: ref32 doi: 10.1093/bib/bbz063 – ident: ref14 doi: 10.1145/3132847.3132967 – ident: ref34 doi: 10.1109/TCYB.2016.2526683 – ident: ref9 doi: 10.1109/tcbb.2021.3126641 – ident: ref28 doi: 10.1038/nn.3881 – ident: ref38 doi: 10.1186/s13059-021-02356-5 – ident: ref48 doi: 10.1038/s41418-020-0578-0 – start-page: 1 volume-title: Comparing Clusterings: An Overview year: 2007 ident: ref30 – ident: ref23 doi: 10.1109/TIP.2019.2940693 |
| SSID | ssj0000605649 |
| Score | 2.5365412 |
| Snippet | Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2473 |
| SubjectTerms | Algorithms Cell differentiation Cluster Analysis Consensus Data models Datasets Distance fusion Feature extraction Gene sequencing Genetic algorithms Genomics graph autoencoder (GAE) Heterogeneity integration algorithm Learning Mathematical models Neural Networks, Computer Optimization Representation learning Sequential analysis Similarity Single-Cell Gene Expression Analysis single-cell RNA-seq |
| Title | A New Graph Autoencoder-Based Consensus-Guided Model for scRNA-seq Cell Type Detection |
| URI | https://ieeexplore.ieee.org/document/9833540 https://www.ncbi.nlm.nih.gov/pubmed/35857730 https://www.proquest.com/docview/2923113592 https://www.proquest.com/docview/2692072568 |
| Volume | 35 |
| WOSCitedRecordID | wos000829206800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXChRooFRG4gamjvPw-rgUWg5VhKCgvUWJPZEqrbKwSfj9zDgPcQAkblHiJJZn7PnGnvkG4JXXudckWEnrQC5TdLGsLbPu57Vt0rgmvQqU-demKFabjf10AG-WXBhEDMFn-JYvw1m-37mBt8rOLWcIpeSg3zHGjLlay36KIlyeB7Sr41xLnZjNnCOj7PlNUVx_IW9Qa3JSmbCE2UITgsrGcPzzbyYp1Fj5O9wMZufy6P86_ADuT_BSrEd9eAgH2D6Co7l0g5hm8jF8Wwta3sQV01WL9dDvmM_S416-I6vmBZfx5BoYnbwabj3d4JJpW0EAV3Tuc7GWHf4QF7jdCvZjxXvsQ0RX-xi-Xn64ufgopxIL0iVZ3MvYp2mtM2wISCk0iXcqc8qTq5qoSmvHuQmqJoNWW1-RJU8U6lpVeUMwxMVNmjyBw3bX4gkI62lpSJn5wdYpVo1tFGYrbxpCnFYbE0E8j3LpJv5xLoOxLYMfomwZhFSykMpJSBG8Xt75PrJv_LP1MYtgaTmNfgSnszDLaYJ2pWZgGyeZ1RG8XB7T1OLzkqrF3UBtcquVIUy4iuDpqATLt2fdefbnfz6He9SzdAzvPoXDfj_gC7jrfva33f6M9HezOgv6-wuOfuWc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuFCiPQAEjcQNTx3Hi9XEptEUsEYIF7S1KbEeqtMrCJuH3M-M8xAGQuEWJk1iesecbe-YbgBdOZk6iYDmuAxlX3sa8MsS6n1WmVnGFehUo81c6zxebjfl0AK_mXBjvfQg-86_pMpzlu53taavs1FCGkEIH_VqqlIyHbK15R0UgMs8C3pVxJrlM9GbKkhHmdJ3nqy_oD0qJbipRlhBfaIJgWWuKgP7NKIUqK38HnMHwnB_9X5dvw60RYLLloBF34MA3d-FoKt7Axrl8DN-WDBc4dkGE1WzZdztitHR-z9-gXXOMCnlSFYyWX_RXDm9Q0bQtQ4jLWvs5X_LW_2Bnfrtl5Mmyt74LMV3NPfh6_m59dsnHIgvcJmnc8dgpVcnU1wilhNeJsyK1wqGzmohSSkvZCaJCk1YZV6ItT4SXlSizGoGIjWuV3IfDZtf4h8CMw8VBEfeDqZQva1MLny6crhFzGql1BPE0yoUdGcipEMa2CJ6IMEUQUkFCKkYhRfByfuf7wL_xz9bHJIK55Tj6EZxMwizGKdoWkqBtnKRGRvB8foyTi05MysbvemyTGSk0osJFBA8GJZi_PenOoz__8xncuFx_XBWr9_mHx3ATe6mGYO8TOOz2vX8C1-3P7qrdPw1a_AtAgOf7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Graph+Autoencoder-Based+Consensus-Guided+Model+for+scRNA-seq+Cell+Type+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Dai-Jun&rft.au=Gao%2C+Ying-Lian&rft.au=Zhao%2C+Jing-Xiu&rft.au=Zheng%2C+Chun-Hou&rft.date=2024-02-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=2&rft.spage=2473&rft_id=info:doi/10.1109%2FTNNLS.2022.3190289&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |