A New Graph Autoencoder-Based Consensus-Guided Model for scRNA-seq Cell Type Detection

Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 2; S. 2473 - 2483
Hauptverfasser: Zhang, Dai-Jun, Gao, Ying-Lian, Zhao, Jing-Xiu, Zheng, Chun-Hou, Liu, Jin-Xing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification.
AbstractList Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification.
Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification.Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has advanced the field of genomics by enabling the delicate differentiation of cell types. However, the properties of single-cell datasets, such as high dropout events, noise, and high dimensionality, are still a research challenge in the single-cell field. To utilize single-cell data more efficiently and to better explore the heterogeneity among cells, a new graph autoencoder (GAE)-based consensus-guided model (scGAC) is proposed in this article. The data are preprocessed into multiple top-level feature datasets. Then, feature learning is performed by using GAEs to generate new feature matrices, followed by similarity learning based on distance fusion methods. The learned similarity matrices are fed back to the GAEs to guide their feature learning process. Finally, the abovementioned steps are iterated continuously to integrate the final consistent similarity matrix and perform other related downstream analyses. The scGAC model can accurately identify critical features and effectively preserve the internal structure of the data. This can further improve the accuracy of cell type identification.
Author Zhang, Dai-Jun
Zhao, Jing-Xiu
Gao, Ying-Lian
Zheng, Chun-Hou
Liu, Jin-Xing
Author_xml – sequence: 1
  givenname: Dai-Jun
  orcidid: 0000-0002-3360-106X
  surname: Zhang
  fullname: Zhang, Dai-Jun
  email: daijunzz@126.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
– sequence: 2
  givenname: Ying-Lian
  orcidid: 0000-0003-0483-5622
  surname: Gao
  fullname: Gao, Ying-Lian
  email: yinliangao@126.com
  organization: Qufu Normal University Library, Qufu Normal University, Rizhao, Shandong, China
– sequence: 3
  givenname: Jing-Xiu
  orcidid: 0000-0002-8383-278X
  surname: Zhao
  fullname: Zhao, Jing-Xiu
  email: zhaojx@qfnu.edu.cn
  organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
– sequence: 4
  givenname: Chun-Hou
  orcidid: 0000-0002-2695-1926
  surname: Zheng
  fullname: Zheng, Chun-Hou
  email: zhengch99@126.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
– sequence: 5
  givenname: Jin-Xing
  orcidid: 0000-0001-6104-2149
  surname: Liu
  fullname: Liu, Jin-Xing
  email: sdcavell@126.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35857730$$D View this record in MEDLINE/PubMed
BookMark eNp9kcGO0zAQhi20iF3KvgBIyBKXvaSMx3HiHEtZClIpEhTEzXKcicgqjbt2IrRvj0tLD3tgLjMaf_94NP9zdjH4gRh7KWAuBFRvt5vN-tscAXEuRQWoqyfsCkWBGUqtL851-fOSXcd4BykKUEVePWOXUmlVlhKu2I8F39Bvvgp2_4svptHT4HxDIXtnIzV86YdIQ5xitpq6JjU-p8eetz7w6L5uFlmke76kvufbhz3x9zSSGzs_vGBPW9tHuj7lGfv-4Xa7_Jitv6w-LRfrzEklxkw0eV6jolblCqiUjQPloMEyl2ARnQCtoC5KXVeNLUTqEtZgi1Yo5USbyxm7Oc7dB38_URzNrosu7WMH8lM0WFQIJapCJ_TNI_TOT2FI2xmsUAohVUoz9vpETfWOGrMP3c6GB_PvYgnAI-CCjzFQe0YEmIMz5q8z5uCMOTmTRPqRyHWjPRxqDLbr_y99dZR2RHT-q9JSqhzkH32nl_g
CODEN ITNNAL
CitedBy_id crossref_primary_10_1021_acs_jcim_5c00731
crossref_primary_10_1109_TCBB_2023_3328029
crossref_primary_10_1093_bib_bbaf378
crossref_primary_10_1089_cmb_2024_0512
crossref_primary_10_1109_JBHI_2024_3487174
crossref_primary_10_1109_TCBB_2024_3459960
crossref_primary_10_1016_j_bspc_2023_105785
crossref_primary_10_1109_JBHI_2024_3442468
crossref_primary_10_1109_TNNLS_2024_3412753
crossref_primary_10_1109_JBHI_2023_3262948
crossref_primary_10_1093_bib_bbae371
crossref_primary_10_1007_s12539_023_00574_y
crossref_primary_10_1016_j_trsl_2024_05_013
Cites_doi 10.1093/bioinformatics/bty390
10.1016/j.yexcr.2020.111959
10.1016/j.cell.2018.02.001
10.1016/j.imu.2020.100330
10.1038/nature25980
10.3390/nu13092952
10.1109/TPAMI.2020.2974828
10.1109/tnnls.2021.3054635
10.1109/tnnls.2021.3069424
10.1109/tnnls.2021.3071369
10.1038/ncomms11075
10.1093/bib/bbab236
10.1038/npp.2015.235
10.1038/ni.3437
10.1109/tkde.2020.3048678
10.1109/TPAMI.2018.2879108
10.1093/bioinformatics/btab535
10.1109/ACCESS.2021.3049807
10.1093/bioinformatics/btx167
10.1186/s12885-020-07675-7
10.1016/j.cmet.2016.08.018
10.1016/j.cell.2019.05.031
10.3389/fgene.2019.00020
10.1109/TNNLS.2020.3016357
10.1109/TIP.2016.2553459
10.1242/jcs.243303
10.1038/nmeth.4207
10.1145/2623330.2623726
10.1126/science.1245316
10.1093/bioinformatics/btz139
10.1109/TKDE.2019.2911946
10.7150/thno.43865
10.1038/nature13173
10.1109/TMM.2018.2889560
10.1201/b19706-12
10.1093/bib/bbab319
10.1016/j.bcp.2020.114204
10.1093/bib/bbz063
10.1145/3132847.3132967
10.1109/TCYB.2016.2526683
10.1109/tcbb.2021.3126641
10.1038/nn.3881
10.1186/s13059-021-02356-5
10.1038/s41418-020-0578-0
10.1109/TIP.2019.2940693
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3190289
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2483
ExternalDocumentID 35857730
10_1109_TNNLS_2022_3190289
9833540
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172254; 61872220
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-1d44b25ef5450e73dc05c0d27430a22c10850b678b9da61430e2b0a6f155c1f43
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829206800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 17:50:01 EDT 2025
Sun Jun 29 16:48:22 EDT 2025
Thu Jan 02 22:22:40 EST 2025
Sat Nov 29 01:40:21 EST 2025
Tue Nov 18 22:43:53 EST 2025
Wed Aug 27 02:07:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-1d44b25ef5450e73dc05c0d27430a22c10850b678b9da61430e2b0a6f155c1f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3360-106X
0000-0002-2695-1926
0000-0001-6104-2149
0000-0002-8383-278X
0000-0003-0483-5622
PMID 35857730
PQID 2923113592
PQPubID 85436
PageCount 11
ParticipantIDs proquest_journals_2923113592
pubmed_primary_35857730
crossref_primary_10_1109_TNNLS_2022_3190289
proquest_miscellaneous_2692072568
crossref_citationtrail_10_1109_TNNLS_2022_3190289
ieee_primary_9833540
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
Huang (ref21)
ref36
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Wagner (ref30) 2007
Strehl (ref31) 2003; 3
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1093/bioinformatics/bty390
– ident: ref45
  doi: 10.1016/j.yexcr.2020.111959
– ident: ref2
  doi: 10.1016/j.cell.2018.02.001
– ident: ref37
  doi: 10.1016/j.imu.2020.100330
– ident: ref40
  doi: 10.1038/nature25980
– ident: ref43
  doi: 10.3390/nu13092952
– ident: ref17
  doi: 10.1109/TPAMI.2020.2974828
– ident: ref1
  doi: 10.1109/tnnls.2021.3054635
– ident: ref16
  doi: 10.1109/tnnls.2021.3069424
– ident: ref12
  doi: 10.1109/tnnls.2021.3071369
– ident: ref27
  doi: 10.1038/ncomms11075
– ident: ref33
  doi: 10.1093/bib/bbab236
– ident: ref41
  doi: 10.1038/npp.2015.235
– ident: ref26
  doi: 10.1038/ni.3437
– start-page: 3569
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref21
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– ident: ref19
  doi: 10.1109/tkde.2020.3048678
– ident: ref20
  doi: 10.1109/TPAMI.2018.2879108
– ident: ref22
  doi: 10.1093/bioinformatics/btab535
– ident: ref39
  doi: 10.1109/ACCESS.2021.3049807
– ident: ref5
  doi: 10.1093/bioinformatics/btx167
– ident: ref44
  doi: 10.1186/s12885-020-07675-7
– ident: ref29
  doi: 10.1016/j.cmet.2016.08.018
– ident: ref8
  doi: 10.1016/j.cell.2019.05.031
– ident: ref13
  doi: 10.3389/fgene.2019.00020
– ident: ref3
  doi: 10.1109/TNNLS.2020.3016357
– volume: 3
  start-page: 583
  year: 2003
  ident: ref31
  article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: ref36
  doi: 10.1109/TIP.2016.2553459
– ident: ref46
  doi: 10.1242/jcs.243303
– ident: ref4
  doi: 10.1038/nmeth.4207
– ident: ref15
  doi: 10.1145/2623330.2623726
– ident: ref24
  doi: 10.1126/science.1245316
– ident: ref7
  doi: 10.1093/bioinformatics/btz139
– ident: ref11
  doi: 10.1109/TKDE.2019.2911946
– ident: ref47
  doi: 10.7150/thno.43865
– ident: ref25
  doi: 10.1038/nature13173
– ident: ref18
  doi: 10.1109/TMM.2018.2889560
– ident: ref35
  doi: 10.1201/b19706-12
– ident: ref10
  doi: 10.1093/bib/bbab319
– ident: ref42
  doi: 10.1016/j.bcp.2020.114204
– ident: ref32
  doi: 10.1093/bib/bbz063
– ident: ref14
  doi: 10.1145/3132847.3132967
– ident: ref34
  doi: 10.1109/TCYB.2016.2526683
– ident: ref9
  doi: 10.1109/tcbb.2021.3126641
– ident: ref28
  doi: 10.1038/nn.3881
– ident: ref38
  doi: 10.1186/s13059-021-02356-5
– ident: ref48
  doi: 10.1038/s41418-020-0578-0
– start-page: 1
  volume-title: Comparing Clusterings: An Overview
  year: 2007
  ident: ref30
– ident: ref23
  doi: 10.1109/TIP.2019.2940693
SSID ssj0000605649
Score 2.5365412
Snippet Single-cell RNA sequencing (scRNA-seq) technology is famous for providing a microscopic view to help capture cellular heterogeneity. This characteristic has...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2473
SubjectTerms Algorithms
Cell differentiation
Cluster Analysis
Consensus
Data models
Datasets
Distance fusion
Feature extraction
Gene sequencing
Genetic algorithms
Genomics
graph autoencoder (GAE)
Heterogeneity
integration algorithm
Learning
Mathematical models
Neural Networks, Computer
Optimization
Representation learning
Sequential analysis
Similarity
Single-Cell Gene Expression Analysis
single-cell RNA-seq
Title A New Graph Autoencoder-Based Consensus-Guided Model for scRNA-seq Cell Type Detection
URI https://ieeexplore.ieee.org/document/9833540
https://www.ncbi.nlm.nih.gov/pubmed/35857730
https://www.proquest.com/docview/2923113592
https://www.proquest.com/docview/2692072568
Volume 35
WOSCitedRecordID wos000829206800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXChRooFRG4gamjvPw-rgUWg5VhKCgvUWJPZEqrbKwSfj9zDgPcQAkblHiJJZn7PnGnvkG4JXXudckWEnrQC5TdLGsLbPu57Vt0rgmvQqU-demKFabjf10AG-WXBhEDMFn-JYvw1m-37mBt8rOLWcIpeSg3zHGjLlay36KIlyeB7Sr41xLnZjNnCOj7PlNUVx_IW9Qa3JSmbCE2UITgsrGcPzzbyYp1Fj5O9wMZufy6P86_ADuT_BSrEd9eAgH2D6Co7l0g5hm8jF8Wwta3sQV01WL9dDvmM_S416-I6vmBZfx5BoYnbwabj3d4JJpW0EAV3Tuc7GWHf4QF7jdCvZjxXvsQ0RX-xi-Xn64ufgopxIL0iVZ3MvYp2mtM2wISCk0iXcqc8qTq5qoSmvHuQmqJoNWW1-RJU8U6lpVeUMwxMVNmjyBw3bX4gkI62lpSJn5wdYpVo1tFGYrbxpCnFYbE0E8j3LpJv5xLoOxLYMfomwZhFSykMpJSBG8Xt75PrJv_LP1MYtgaTmNfgSnszDLaYJ2pWZgGyeZ1RG8XB7T1OLzkqrF3UBtcquVIUy4iuDpqATLt2fdefbnfz6He9SzdAzvPoXDfj_gC7jrfva33f6M9HezOgv6-wuOfuWc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuFCiPQAEjcQNTx3Hi9XEptEUsEYIF7S1KbEeqtMrCJuH3M-M8xAGQuEWJk1iesecbe-YbgBdOZk6iYDmuAxlX3sa8MsS6n1WmVnGFehUo81c6zxebjfl0AK_mXBjvfQg-86_pMpzlu53taavs1FCGkEIH_VqqlIyHbK15R0UgMs8C3pVxJrlM9GbKkhHmdJ3nqy_oD0qJbipRlhBfaIJgWWuKgP7NKIUqK38HnMHwnB_9X5dvw60RYLLloBF34MA3d-FoKt7Axrl8DN-WDBc4dkGE1WzZdztitHR-z9-gXXOMCnlSFYyWX_RXDm9Q0bQtQ4jLWvs5X_LW_2Bnfrtl5Mmyt74LMV3NPfh6_m59dsnHIgvcJmnc8dgpVcnU1wilhNeJsyK1wqGzmohSSkvZCaJCk1YZV6ItT4SXlSizGoGIjWuV3IfDZtf4h8CMw8VBEfeDqZQva1MLny6crhFzGql1BPE0yoUdGcipEMa2CJ6IMEUQUkFCKkYhRfByfuf7wL_xz9bHJIK55Tj6EZxMwizGKdoWkqBtnKRGRvB8foyTi05MysbvemyTGSk0osJFBA8GJZi_PenOoz__8xncuFx_XBWr9_mHx3ATe6mGYO8TOOz2vX8C1-3P7qrdPw1a_AtAgOf7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Graph+Autoencoder-Based+Consensus-Guided+Model+for+scRNA-seq+Cell+Type+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Dai-Jun&rft.au=Gao%2C+Ying-Lian&rft.au=Zhao%2C+Jing-Xiu&rft.au=Zheng%2C+Chun-Hou&rft.date=2024-02-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=2&rft.spage=2473&rft_id=info:doi/10.1109%2FTNNLS.2022.3190289&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon