Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion

In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 10; S. 3333 - 3348
Hauptverfasser: Deng, Xin, Dragotti, Pier Luigi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.
AbstractList In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.
In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.
Author Deng, Xin
Dragotti, Pier Luigi
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-4708-6572
  surname: Deng
  fullname: Deng, Xin
  email: x.deng16@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Pier Luigi
  orcidid: 0000-0002-6073-2807
  surname: Dragotti
  fullname: Dragotti, Pier Luigi
  email: p.dragotti@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32248098$$D View this record in MEDLINE/PubMed
BookMark eNp9kclOwzAQhi0EgrK8AEgoEhcuKV5ixz5WZatEC0LlHDnOBAWSuNgJiLfHXeiBA6exrO_zeOY_RLutbQGhU4KHhGB1NX8aTSdDiikeUiUTmiQ7aECJwLGiiu6iASaCxlJSeYAOvX_DmCQcs310wChNJFZygGbXAItobNtPW_ddZVtdRzPo3ap0X9a9R6V10bSvuyqe2iLcTxr9CtEz-M46vVQi3RbRbe_D8Rjtlbr2cLKpR-jl9mY-vo8fHu8m49FDbBgnXUyUUYXmJDE8VboUealyTAVnjADhqWRUcRC6yDXjOaEEtNAGylynxKS44OwIXa7fXTj70YevZE3lDdS1bsH2PqNMiiRMqUhAL_6gb7Z3Yc5AcSHT0E2qQJ1vqD5voMgWrmq0-85-NxUAugaMs947KLcIwdkyjmwVR7aMI9vEEST5RzJVt9pZ53RV_6-erdUKALa9FOYcC8Z-AGyylmw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102230
crossref_primary_10_1016_j_patcog_2022_109260
crossref_primary_10_1016_j_neucom_2023_126918
crossref_primary_10_1016_j_inffus_2025_103600
crossref_primary_10_1016_j_patcog_2024_111102
crossref_primary_10_1109_TGRS_2025_3543498
crossref_primary_10_1109_JSTARS_2023_3249202
crossref_primary_10_1109_TIP_2021_3106812
crossref_primary_10_3390_math13162584
crossref_primary_10_1016_j_cviu_2025_104278
crossref_primary_10_1145_3677123
crossref_primary_10_1109_TIM_2025_3584116
crossref_primary_10_1109_TIM_2025_3527616
crossref_primary_10_1002_wics_1646
crossref_primary_10_1049_ipr2_12844
crossref_primary_10_1117_1_JRS_16_034520
crossref_primary_10_1016_j_inffus_2024_102884
crossref_primary_10_3390_s25010024
crossref_primary_10_1016_j_cviu_2023_103841
crossref_primary_10_1109_TIP_2024_3374072
crossref_primary_10_3390_s24082466
crossref_primary_10_1007_s11263_024_02089_5
crossref_primary_10_1109_TGRS_2022_3216319
crossref_primary_10_1109_TIP_2023_3242824
crossref_primary_10_3390_s24030867
crossref_primary_10_1109_JSTARS_2024_3408806
crossref_primary_10_1109_TNNLS_2023_3250664
crossref_primary_10_1109_TCSVT_2021_3078559
crossref_primary_10_1145_3584860
crossref_primary_10_1007_s12530_025_09663_3
crossref_primary_10_1109_TPAMI_2025_3578468
crossref_primary_10_1016_j_patrec_2024_06_025
crossref_primary_10_1109_TIP_2024_3445729
crossref_primary_10_1109_TCSVT_2024_3507540
crossref_primary_10_1109_TPAMI_2023_3268209
crossref_primary_10_1109_TGRS_2023_3329150
crossref_primary_10_1177_09544100221143565
crossref_primary_10_1016_j_inffus_2023_03_012
crossref_primary_10_1109_TIP_2021_3131041
crossref_primary_10_3390_rs15112869
crossref_primary_10_1016_j_inffus_2024_102603
crossref_primary_10_3390_rs16152775
crossref_primary_10_3390_rs16213979
crossref_primary_10_1109_TIP_2023_3235536
crossref_primary_10_1109_TPAMI_2024_3504490
crossref_primary_10_1093_ijlct_ctaf015
crossref_primary_10_1109_TCSVT_2024_3397012
crossref_primary_10_3390_math11214556
crossref_primary_10_1109_TGRS_2024_3408793
crossref_primary_10_1117_1_JEI_31_6_063062
crossref_primary_10_1109_TNNLS_2023_3253472
crossref_primary_10_1016_j_eswa_2023_120733
crossref_primary_10_3390_electronics13163309
crossref_primary_10_1016_j_inffus_2022_03_006
crossref_primary_10_1007_s11042_022_14108_z
crossref_primary_10_1109_TIP_2021_3058764
crossref_primary_10_1007_s00371_024_03760_1
crossref_primary_10_1049_ipr2_12877
crossref_primary_10_1016_j_inffus_2025_103487
crossref_primary_10_1016_j_asoc_2025_113472
crossref_primary_10_1109_TMM_2024_3521833
crossref_primary_10_1016_j_cmpb_2025_109014
crossref_primary_10_1109_TIM_2023_3280496
crossref_primary_10_1109_TCI_2024_3439990
crossref_primary_10_1007_s11760_025_04537_2
crossref_primary_10_1109_TMM_2024_3521720
crossref_primary_10_1002_prm2_12156
crossref_primary_10_1016_j_cviu_2022_103407
crossref_primary_10_1109_TCSVT_2023_3327766
crossref_primary_10_1109_TGRS_2023_3290074
crossref_primary_10_1109_TGRS_2025_3603835
crossref_primary_10_1145_3612922
crossref_primary_10_1016_j_inffus_2023_101851
crossref_primary_10_1109_TIM_2024_3417544
crossref_primary_10_1109_TPAMI_2023_3334624
crossref_primary_10_1038_s41598_025_03567_7
crossref_primary_10_1109_TMM_2022_3214375
crossref_primary_10_1016_j_imavis_2024_105344
crossref_primary_10_1109_TIP_2024_3387297
crossref_primary_10_1016_j_sigpro_2024_109620
crossref_primary_10_1016_j_inffus_2022_12_002
crossref_primary_10_1109_TPAMI_2024_3525089
crossref_primary_10_1016_j_inffus_2025_103506
crossref_primary_10_1117_1_JEI_34_2_023002
crossref_primary_10_1109_TCSVT_2022_3202692
crossref_primary_10_1016_j_inffus_2025_103146
crossref_primary_10_1109_TPAMI_2024_3406556
crossref_primary_10_1007_s11263_022_01699_1
crossref_primary_10_3390_electronics13204020
crossref_primary_10_1016_j_compbiomed_2024_109577
crossref_primary_10_1016_j_asoc_2024_112240
crossref_primary_10_1142_S0219467825500391
crossref_primary_10_1109_TIM_2022_3203455
crossref_primary_10_1109_TCSVT_2022_3144455
crossref_primary_10_2174_0118750362370697250630063814
crossref_primary_10_1002_jbio_202400420
crossref_primary_10_1109_JETCAS_2024_3394495
crossref_primary_10_1007_s11263_025_02409_3
crossref_primary_10_1109_TGRS_2023_3339843
crossref_primary_10_1016_j_compeleceng_2024_109256
crossref_primary_10_1016_j_displa_2024_102752
crossref_primary_10_1108_IJICC_10_2024_0516
crossref_primary_10_1109_ACCESS_2023_3234917
crossref_primary_10_1016_j_neucom_2024_127672
crossref_primary_10_1109_LGRS_2025_3554798
crossref_primary_10_1109_TIP_2022_3141251
crossref_primary_10_1007_s10489_022_03950_1
crossref_primary_10_1109_TCSVT_2022_3163649
crossref_primary_10_1016_j_inffus_2025_103414
crossref_primary_10_1109_TGRS_2024_3406690
crossref_primary_10_1016_j_bspc_2024_107050
crossref_primary_10_1109_TIP_2024_3489275
crossref_primary_10_1109_TNNLS_2024_3454811
crossref_primary_10_1016_j_atmosres_2024_107505
crossref_primary_10_1109_TGRS_2025_3547945
crossref_primary_10_1007_s11263_024_02256_8
crossref_primary_10_1016_j_patcog_2024_110689
crossref_primary_10_1016_j_neunet_2023_09_023
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1109_TNNLS_2022_3165180
crossref_primary_10_1016_j_neunet_2024_106603
crossref_primary_10_1016_j_inffus_2022_09_019
crossref_primary_10_1109_TMI_2025_3563523
crossref_primary_10_1016_j_imavis_2025_105669
crossref_primary_10_1117_1_JRS_18_022203
crossref_primary_10_1109_TCSVT_2022_3190553
crossref_primary_10_1109_TIP_2025_3570571
crossref_primary_10_1186_s12880_023_01160_w
Cites_doi 10.1109/TPAMI.2018.2883553
10.1109/CVPR.2016.265
10.1109/CVPR.2019.00399
10.1007/978-3-030-01240-3_39
10.1109/TIP.2008.924281
10.1109/ICCV.2011.6126423
10.1109/TIP.2016.2564643
10.1109/TIP.2019.2944270
10.1109/TPAMI.2017.2669034
10.1109/LSP.2014.2354534
10.1109/TIP.2018.2887342
10.1007/978-3-319-46475-6_43
10.1016/j.inffus.2011.01.002
10.1515/9783110524116
10.1109/ICCV.2015.389
10.1016/j.patcog.2004.03.010
10.1109/TIP.2003.819861
10.1109/TIP.2017.2671921
10.1109/TIP.2018.2794218
10.1142/S0218126616501231
10.1016/j.inffus.2014.10.004
10.1109/CVPR.2007.383248
10.1109/ICIP.2019.8803313
10.1109/TIP.2018.2887029
10.1109/CVPR.2016.90
10.1109/ICCV.2015.66
10.1109/ICASSP.2018.8462313
10.1109/TCI.2019.2916502
10.1109/TIP.2012.2197014
10.1109/TCSVT.2018.2866399
10.1109/CVPR.2016.182
10.1109/CVPR.2017.83
10.1016/j.inffus.2010.04.001
10.1007/978-3-319-46475-6_25
10.1109/TIP.2015.2468183
10.1109/TPAMI.2015.2417569
10.1109/TIM.2018.2838778
10.1109/LSP.2016.2618776
10.1109/ICCV.2013.194
10.1109/TIP.2018.2874285
10.1007/978-3-319-10578-9_53
10.1002/cpa.20042
10.1145/1275808.1276497
10.1109/ICCV.2017.189
10.1109/TPAMI.2018.2890623
10.1109/TCSVT.2019.2923901
10.1016/j.sigpro.2009.01.012
10.1109/TGRS.2014.2381272
10.1016/j.inffus.2018.09.004
10.1016/j.inffus.2016.05.004
10.1109/ICCV.2017.505
10.1109/ICCV.2013.13
10.1109/JSEN.2018.2822712
10.1109/ICASSP.2019.8683124
10.1109/CVPRW.2017.151
10.5244/C.30.7
10.1109/TIP.2010.2046811
10.1109/CVPR.2018.00652
10.1109/ICCV.2015.212
10.1109/TIP.2016.2612826
10.1109/CVPR.2017.406
10.1109/TIP.2015.2495260
10.1109/TPAMI.2019.2961672
10.1136/jnnp.74.3.288
10.1109/CVPR.2017.618
10.1117/12.766355
10.1109/TIP.2015.2501749
10.1109/CVPR.2019.00180
10.1109/CVPR.2018.00197
10.1007/978-3-319-46493-0_10
10.1007/978-3-642-33783-3_44
10.1007/978-3-642-15549-9_1
10.1016/j.inffus.2016.12.001
10.1109/TCI.2017.2786138
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.2984244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 3348
ExternalDocumentID 32248098
10_1109_TPAMI_2020_2984244
9055063
Genre orig-research
Journal Article
GrantInformation_xml – fundername: CSC-Imperial Scholarship
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-19c9da514c579af6bf9b0265331e15783295e6adba35b121ea6acefba71c70d53
IEDL.DBID RIE
ISICitedReferencesCount 192
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692232400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 03:48:20 EDT 2025
Mon Jun 30 05:06:42 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:11:39 EST 2025
Wed Aug 27 02:27:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-19c9da514c579af6bf9b0265331e15783295e6adba35b121ea6acefba71c70d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4708-6572
0000-0002-6073-2807
PMID 32248098
PQID 2568778389
PQPubID 85458
PageCount 16
ParticipantIDs ieee_primary_9055063
proquest_miscellaneous_2386432291
crossref_primary_10_1109_TPAMI_2020_2984244
pubmed_primary_32248098
crossref_citationtrail_10_1109_TPAMI_2020_2984244
proquest_journals_2568778389
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref59
ref15
ref58
ref53
ref52
kim (ref12) 2019
ref55
ref11
ref54
ref10
ref17
kwon (ref9) 2015
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
papyan (ref14) 2017; 18
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref80
ref79
ref35
ref78
song (ref32) 2016
ref34
ref75
ref31
ref74
ref30
ref77
ref33
ref76
shi (ref37) 2018
ref2
ref1
ref39
ref38
ref71
ref70
lu (ref56) 2015
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
lahoud (ref36) 2018
ref60
ref62
ref61
References_xml – start-page: 360
  year: 2016
  ident: ref32
  article-title: Deep depth super-resolution: Learning depth super-resolution using deep convolutional neural network
  publication-title: Proc Asian Conf Comput Vis
– ident: ref28
  doi: 10.1109/TPAMI.2018.2883553
– ident: ref1
  doi: 10.1109/CVPR.2016.265
– ident: ref59
  doi: 10.1109/CVPR.2019.00399
– ident: ref70
  doi: 10.1007/978-3-030-01240-3_39
– ident: ref23
  doi: 10.1109/TIP.2008.924281
– ident: ref54
  doi: 10.1109/ICCV.2011.6126423
– ident: ref57
  doi: 10.1109/TIP.2016.2564643
– ident: ref13
  doi: 10.1109/TIP.2019.2944270
– ident: ref27
  doi: 10.1109/TPAMI.2017.2669034
– ident: ref41
  doi: 10.1109/LSP.2014.2354534
– ident: ref4
  doi: 10.1109/TIP.2018.2887342
– ident: ref2
  doi: 10.1007/978-3-319-46475-6_43
– ident: ref45
  doi: 10.1016/j.inffus.2011.01.002
– ident: ref64
  doi: 10.1515/9783110524116
– ident: ref25
  doi: 10.1109/ICCV.2015.389
– ident: ref40
  doi: 10.1016/j.patcog.2004.03.010
– ident: ref68
  doi: 10.1109/TIP.2003.819861
– ident: ref73
  doi: 10.1109/TIP.2017.2671921
– ident: ref72
  doi: 10.1109/TIP.2018.2794218
– ident: ref78
  doi: 10.1142/S0218126616501231
– ident: ref77
  doi: 10.1016/j.inffus.2014.10.004
– ident: ref66
  doi: 10.1109/CVPR.2007.383248
– ident: ref17
  doi: 10.1109/ICIP.2019.8803313
– ident: ref33
  doi: 10.1109/TIP.2018.2887029
– ident: ref61
  doi: 10.1109/CVPR.2016.90
– ident: ref55
  doi: 10.1109/ICCV.2015.66
– ident: ref52
  doi: 10.1109/ICASSP.2018.8462313
– ident: ref10
  doi: 10.1109/TCI.2019.2916502
– ident: ref46
  doi: 10.1109/TIP.2012.2197014
– start-page: 0
  year: 2018
  ident: ref37
  article-title: Deep residual attention network for spectral image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– ident: ref34
  doi: 10.1109/TCSVT.2018.2866399
– ident: ref62
  doi: 10.1109/CVPR.2016.182
– ident: ref5
  doi: 10.1109/CVPR.2017.83
– ident: ref43
  doi: 10.1016/j.inffus.2010.04.001
– ident: ref76
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref21
  doi: 10.1109/TIP.2015.2468183
– ident: ref26
  doi: 10.1109/TPAMI.2015.2417569
– ident: ref81
  doi: 10.1109/TIM.2018.2838778
– ident: ref3
  doi: 10.1109/LSP.2016.2618776
– ident: ref8
  doi: 10.1109/ICCV.2013.194
– ident: ref35
  doi: 10.1109/TIP.2018.2874285
– ident: ref24
  doi: 10.1007/978-3-319-10578-9_53
– ident: ref82
  doi: 10.1002/cpa.20042
– year: 2019
  ident: ref12
  article-title: Deformable kernel networks for joint image filtering
– ident: ref18
  doi: 10.1145/1275808.1276497
– ident: ref16
  doi: 10.1109/ICCV.2017.189
– ident: ref11
  doi: 10.1109/TPAMI.2018.2890623
– ident: ref60
  doi: 10.1109/TCSVT.2019.2923901
– ident: ref49
  doi: 10.1109/TIP.2018.2887342
– ident: ref42
  doi: 10.1016/j.sigpro.2009.01.012
– ident: ref44
  doi: 10.1109/TGRS.2014.2381272
– volume: 18
  start-page: 2887
  year: 2017
  ident: ref14
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J Mach Learn Res
– ident: ref50
  doi: 10.1016/j.inffus.2018.09.004
– ident: ref39
  doi: 10.1016/j.inffus.2016.05.004
– start-page: 35
  year: 2018
  ident: ref36
  article-title: Multi-modal spectral image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– ident: ref48
  doi: 10.1109/ICCV.2017.505
– ident: ref20
  doi: 10.1109/ICCV.2013.13
– start-page: 2245
  year: 2015
  ident: ref56
  article-title: Sparse depth super resolution
  publication-title: Proc Conf Comput Vis Pattern Recognit
– ident: ref80
  doi: 10.1109/JSEN.2018.2822712
– ident: ref38
  doi: 10.1109/ICASSP.2019.8683124
– ident: ref58
  doi: 10.1109/CVPRW.2017.151
– ident: ref65
  doi: 10.5244/C.30.7
– ident: ref69
  doi: 10.1109/TIP.2010.2046811
– ident: ref75
  doi: 10.1109/CVPR.2018.00652
– ident: ref15
  doi: 10.1109/ICCV.2015.212
– ident: ref6
  doi: 10.1109/TIP.2016.2612826
– ident: ref22
  doi: 10.1109/CVPR.2017.406
– ident: ref51
  doi: 10.1109/TIP.2015.2495260
– ident: ref7
  doi: 10.1109/TPAMI.2019.2961672
– ident: ref79
  doi: 10.1136/jnnp.74.3.288
– ident: ref63
  doi: 10.1109/CVPR.2017.618
– ident: ref71
  doi: 10.1117/12.766355
– ident: ref53
  doi: 10.1109/TIP.2015.2501749
– ident: ref31
  doi: 10.1109/CVPR.2019.00180
– ident: ref30
  doi: 10.1109/CVPR.2018.00197
– ident: ref29
  doi: 10.1007/978-3-319-46493-0_10
– ident: ref67
  doi: 10.1007/978-3-642-33783-3_44
– ident: ref19
  doi: 10.1007/978-3-642-15549-9_1
– start-page: 159
  year: 2015
  ident: ref9
  article-title: Data-driven depth map refinement via multi-scale sparse representation
  publication-title: Proc Conf Comput Vis Pattern Recognit
– ident: ref47
  doi: 10.1016/j.inffus.2016.12.001
– ident: ref74
  doi: 10.1109/TCI.2017.2786138
SSID ssj0014503
Score 2.6994846
Snippet In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3333
SubjectTerms Artificial neural networks
Coding
Computer architecture
Computer vision
Convolutional codes
Convolutional neural networks
Feature extraction
Image coding
Image fusion
Image processing
Image reconstruction
Image resolution
Image restoration
Machine learning
Modules
multi-modal convolutional sparse coding
Multi-modal image restoration
Neural networks
Task analysis
Title Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion
URI https://ieeexplore.ieee.org/document/9055063
https://www.ncbi.nlm.nih.gov/pubmed/32248098
https://www.proquest.com/docview/2568778389
https://www.proquest.com/docview/2386432291
Volume 43
WOSCitedRecordID wos000692232400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5UpOhDtdratCpb8K2NZpPL7s6j2B764CFF4d7C7mYChTYRvfPv7-xeElqoQp8Skk2yyTeT_WZ3fgCclE1jNPeQFUm5lBl4mTLMlGaKnHE1Gm9sLDahZzMzn-PNGnwZY2GIKDqf0WnYjWv5deeXYarsDDPm06pYh3Wt9SpWa1wxmJSxCjIzGNZwNiOGAJkMz25vzq-v2BTMs9McTYjs2oJXLMgTk6H5azyKBVae55pxzJnu_F9vd-F1zy3F-UoY3sAatXuwM9RtEL0a78H2H0kI92H2leheXHTtUy-FfIuQsiNuoo-4YGIrYqRuet3VfPzqF_-FxPdYlCYiK2xbi-kyzLy9hbvpt9uLy7SvspD6opSLVKLH2jJv8qVG2yjXoGPDjGmgJMn6XORYkrK1s0XpZC7JKuupcVZLr7O6LN7BRtu19B6EsdZlLpgoCifoCjRECnFCubS2cSoBOXzryvcpyEMljJ9VNEUyrCJUVYCq6qFK4PN4zf0qAceLrfcDEGPLHoMEDgdIq15HHysme0bz-xlM4NN4mrUrLJnYlroltykMU7Y8R5nAwUoUxnsPEvTh38_8CFt58H-Jjn-HsLF4WNIRbPqnxY_Hh2MW4bk5jiL8G2af6dM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5RAEJ7UarR9sNqqpVbFxDdLyy4s7Dw21Usv9i6NOZO-kd1lSEwUmvauf7-ze0A00SY-QWCBhW-G_WZ3fgB8UE2jS-4hK1JhE2bgKmGYKUkLstrWqJ02odhEOZ_rqyu83ICjMRaGiILzGR373bCWX3du5afKTjBlPl1kD-ChynMp1tFa45pBrkIdZOYwrONsSAwhMimeLC5PZ1M2BmV6LFH72K4teMyinOsU9R8jUiix8m-2GUadyc7_9fcZPO3ZZXy6FofnsEHtLuwMlRviXpF3Yfu3NIR7MP9EdB2fde1dL4d8C5-0I2yCl3jM1DYOsbrJrKv5-PQn_4fir6EsTcA2Nm0dT1Z-7u0FfJt8XpydJ32dhcRlSiwTgQ5rw8zJqRJNU9gGLZtmTAQFCdboTKKiwtTWZMoKKcgUxlFjTSlcmdYqewmbbdfSPsTaGJtab6QUmKPNUBMViDlJYUxjiwjE8K0r1ych97UwflTBGEmxClBVHqqqhyqCj-M11-sUHPe23vNAjC17DCI4HCCtei29rZju6ZLfT2ME78fTrF9-0cS01K24TaaZtEmJIoJXa1EY7z1I0MHfn_kOnpwvZhfVxXT-5TVsSe8NE9wAD2FzebOiN_DI3S2_3968DYL8CzSe7DI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Network+for+Multi-modal+Image+Restoration+and+Fusion&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Deng%2C+Xin&rft.au=Dragotti%2C+Pier+Luigi&rft.date=2021-10-01&rft.eissn=1939-3539&rft_id=info:doi/10.1109%2FTPAMI.2020.2984244&rft_id=info%3Apmid%2F32248098&rft.externalDocID=32248098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon